Matching Items (2)
Filtering by

Clear all filters

136182-Thumbnail Image.png
Description
The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic

The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic code. They aim to solve these genetic mysteries using whole exome sequencing, a method that prioritizes the protein-coding portion of the genome in the search for disease-causing variants. Unfortunately, a communication gap sometimes exists between the TGen scientists and the patients they serve. I have seen, first hand, the kind of confusion that this study elicits in the families of its participants. Therefore, for my thesis, I decided to create a booklet that is meant to provide some clarity as to what exactly The Dorrance Center for Rare Childhood Disorders does to help diagnose children with rare disorders. The purpose of the booklet is to dispel any confusion regarding the study by providing a general review of genetics and an application of these lessons to the relevant sequencing technology as well as a discussion of the causes and effects of genetic mutations that often times are linked to rare childhood disorders.
ContributorsCambron, Julia Claire (Author) / LaBelle, Jeffrey (Thesis director) / Huentelman, Matt (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
135704-Thumbnail Image.png
Description
A single splice site mutation in the mitochondrial methionyl-tRNA formyltransferase (MTFMT) gene is described in three patients with mitochondrial disease from two unrelated families. Nuclear-encoded MTFMT localized to the mitochondria is responsible for the formylation of Met-tRNAMet necessary for the initiation of translation in the mitochondria. This mutation has been

A single splice site mutation in the mitochondrial methionyl-tRNA formyltransferase (MTFMT) gene is described in three patients with mitochondrial disease from two unrelated families. Nuclear-encoded MTFMT localized to the mitochondria is responsible for the formylation of Met-tRNAMet necessary for the initiation of translation in the mitochondria. This mutation has been associated with mitochondrial disease (oxidative phosphorylation deficiencies due to a decreased expression of MTFMT), Leigh syndrome, and developmental delay. However, there is significant phenotypic variation between patients, which is not uncommon in mitochondrial disease. Though the variation was not clearly elucidated through analysis of gene expression, this data supported two potential gene modifiers as well as proposed an alternative energy producing pathway in the cell—glutamine metabolism. This nonsynonymous mutation at site c.626C>T generates a splicing suppressor in the coding region on exon 4 resulting exon skipping in almost all transcripts in homozygotes during splicing. It is hypothesized that antisense oligotherapy will be effective in rescuing this mutation by inhibiting the splice silencer and promoting exon inclusion as well as an increased expression of MTFMT protein in affected patients. Patient fibroblast cells were treated with MTFMT Oligo 3, which was shown to be promising in previous experiments. Real-Time qPCR was used to measure mRNA expression showing a significant up-regulation of wild-type MTFMT with treatment. In order to test whether this therapy increases mitochondrial function as well, three mitochondrial functional assays measuring superoxide species in the mitochondria, the mitochondrial membrane potential, and calcium uptake in the mitochondria were tested for optimization of results. Success has been shown in the measurement of superoxide species and mitochondrial membrane potential in patient cells without treatment. Oligotherapy will hopefully be considered as a viable therapeutic option in the future as further testing is conducted and perfected.
ContributorsMoskowitz, Abby Mae (Author) / Huentelman, Matt (Thesis director) / Schrauwen, Isabelle (Committee member) / Rangasamy, Sampath (Committee member) / School of Human Evolution and Social Change (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05