Matching Items (5)
137462-Thumbnail Image.png
Description
Web-application development constantly changes \u2014 new programming languages, testing tools and programming methodologies are often proposed. The focus of this project is on the tool Selenium and the fairly new technique known as High Volume Automated Testing (HVAT). Both of these techniques were used to test the Just-in-Time Teaching and

Web-application development constantly changes \u2014 new programming languages, testing tools and programming methodologies are often proposed. The focus of this project is on the tool Selenium and the fairly new technique known as High Volume Automated Testing (HVAT). Both of these techniques were used to test the Just-in-Time Teaching and Learning Classroom Management System software. Selenium was used with a black-box testing technique and HVAT was employed in a white-box testing technique. Two of the major functionalities of this software were examined, which include the login and the professor functionality. The results of the black-box testing technique showed parts of the login component contain bugs, but the professor component is clean. HVAT white-box testing revealed error free implementation on the code level. We present an analysis on a new technique for HVAT testing with Selenium.
ContributorsEjaz, Samira (Author) / Balasooriya, Janaka (Thesis director) / Nakamura, Mutsumi (Committee member) / Wilkerson, Kelly (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2013-05
151800-Thumbnail Image.png
Description
Background Hemodialysis (HD) patients elicit an oxidant-antioxidant imbalance in addition to a selenium deficiency, possibly contributing to cardiovascular disease (CVD) mortality. Objective To evaluate the effect of selenium supplementation on CVD outcomes and antioxidant status in HD patients. Design A randomized controlled intervention trial conducted from October 2012 to January

Background Hemodialysis (HD) patients elicit an oxidant-antioxidant imbalance in addition to a selenium deficiency, possibly contributing to cardiovascular disease (CVD) mortality. Objective To evaluate the effect of selenium supplementation on CVD outcomes and antioxidant status in HD patients. Design A randomized controlled intervention trial conducted from October 2012 to January 2013. Participants/setting The study included 27 maintenance HD patients (61.1+17.5y, 14M, 13F) receiving HD in the greater Phoenix, AZ area. Intervention Patients received one of three treatments daily: 2 Brazil nuts, (5g, 181µg/day of selenium as selenomethionine [predicted]), 1 tablet of selenium (200µg/day of selenium as selenomethionine), or control (3 gummy bears). Main outcome measures Antioxidant status outcome measures included total antioxidant capacity, vitamin C, and RBC and plasma glutathione peroxidase (GSH-Px). CVD outcomes measures included brain natriuretic peptide; plasma cholesterol, high density lipoprotein, low density lipoprotein, triglycerides; blood pressure, and thoracic cavity fluid accumulation. Statistical analyses performed Repeated measures ANOVA analyzed changes over time and between groups at months 0 and 2 and months 0 and 3. Results Independent analysis showed the Brazil nuts provided 11µg of selenium/day and the pill provided 266µg of selenium/day. Consequently, the Brazil nut group was combined with the placebo group. 21 patients completed 2 months of the study and 17 patients completed the study in its entirety. Data was analyzed for months 0, 1 and 2. No significant differences were noted for antioxidant status outcome measures with the exception of plasma GSH-Px. Patients receiving the selenium pill had a significant increase in plasma GSH-Px compared to the placebo group (6.0+11 and -4.0+7.6, respectively, p=0.023 for change between month 0 and month 2). No significant differences were seen in total antioxidant capacity or for CVD outcome measures over time or between groups. Conclusions These data indicate that selenium supplementation increased plasma GSH-Px concentration in HD patients; however, oxidative stress was not altered by selenium supplementation. The low vitamin C status of HD patients warrants further research, specifically in conjunction with selenium supplementation.
ContributorsSussman, Elizabeth Jessica (Author) / Johnston, Carol S (Thesis advisor) / Boren, Kenneth (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Sweazea, Karen (Committee member) / Vaughan, Linda (Committee member) / Arizona State University (Publisher)
Created2013
135604-Thumbnail Image.png
Description
Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been

Selenium, a group 16 metalloid on the periodic table, is a necessary mineral for many organisms. Trace amounts of selenium are essential for normal development, antioxidant protein function, enzyme function, and hormone regulation (Burden et al., 2016). However, when selenium is found in toxic amounts in organisms, it has been found to substitute for sulfur in proteins, which can be toxic to these animals, and cause oxidative stress (Quinn et al., 2007). Using the previous research done with acute exposure to organic and inorganic selenium compounds, we hypothesized that the inorganic sodium selenate would significantly decrease learning and memory recall for both chronic and acute exposure. We also hypothesized that the consumption of organic methylseleno-L-cysteine by honey bees would decrease learning and memory recall for both the chronic and acute exposure. We further hypothesized that protein carbonyl content would be increased due to oxidative damage caused by selenium in both the sodium selenate and the methylseleno-L-cysteine treatment groups, but that the inorganic selenium compound would increase the carbonyl content more than the methylseleno-L-cysteine. To run the experiments, three tents outside had two colonies in each tent. One tent contained the sodium selenate group, another had the sucrose control, and one contained the methylseleno-L-cysteine group. The treatment groups were fed selenium in their sucrose feeders. The first part of the experiment was training the bees by using proboscis extension response (PER) to teach them to extend their proboscis to the rewarded odor and not to the unrewarded odor. This was done by pairing the rewarded odor with a sucrose reward and not pairing it with the unrewarded odor. Then their short-term and long-term memory recall was tested. The second part of the experiment was checking for oxidative damage by measuring the protein carbonyl content in the bees. Three boxes were set up with the same three treatment groups as used in the tents. The treatment group bees were exposed to selenium in the sucrose feeders and in the pollen patties. After one week, the living bees were removed and frozen. They were then homogenized to extract protein. The first assay run was the protein content assay to establish a standard protein concentration for samples. Then a protein carbonyl assay was run, to determine the protein carbonyl content. Overall, the experiment found that exposure to selenium negatively impacted honey bees learning and memory recall significantly. Chronic exposure to the inorganic selenate reduced the bees' long-term memory abilities to differentiate between odors. With methylseleno-L-cysteine, it had no significant effect for the chronic exposure, but for the acute exposure, it had a significant impairment on their abilities to distinguish between the rewarded and unrewarded odors during conditioning. Our results showed that from our experiment there appeared to be no significant effect of selenium exposure on the increase of carbonylation content in the different treatment groups. This is most likely due to the fact the carbonyl content was not detectable because the protein concentration was low in the samples (approximately 3.5 mg/mL).
ContributorsWinski, Alexandra (Co-author) / Winski, Brandon (Co-author) / Smith, Brian (Thesis director) / Harrison, Jon (Committee member) / Burden, Christina (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
189281-Thumbnail Image.png
Description
Selenium oxyanions (i.e., selenate and selenite) can be released into the environment from surface mining. Selenium is an essential micronutrient, but high selenium in water has adverse health effects for aquatic animals and humans. Mine-influenced water is often co-contaminated with high concentrations of nitrate, selenium oxyanions, and sulfate. The Saturated

Selenium oxyanions (i.e., selenate and selenite) can be released into the environment from surface mining. Selenium is an essential micronutrient, but high selenium in water has adverse health effects for aquatic animals and humans. Mine-influenced water is often co-contaminated with high concentrations of nitrate, selenium oxyanions, and sulfate. The Saturated Rock Fill (SRF) is a treatment technology that utilizes waste rocks from surface mining to create a biological treatment system that can be effective at removing nitrate and selenium-oxyanions from the mine-influenced water. The Selenium, Sulfur, and Nitrogen species (SeSANS) model can be used to estimate the respiration, synthesis, and endogenous decay of biomass in an SRF. The goal of this thesis is to simulate SRF biofilms using a biofilm version of SeSANS. Three nitrate loads (100, 250, and 450 kg NO3-N/day) with a low flow rate (1000 m3/d) or a high flow rate (5000 m3/d) -- a total of six scenarios -- were simulated for 5000 days of operation. The influent water contained 0.18 g Se/m3 of selenate, 0.02 Se/m3 selenite, and 800 S/m3 of sulfate; the input nitrate concentration was 100, 250, and 450 g N/m3 for the low flow rate and 20, 50, and 90 g N/m3 for the high flow rate. Methanol was injected as the electron donor. These criteria were used to define a successful simulation: effluent nitrate < 3 mg N/L and total dissolved Se < 0.029 mg Se/L, minimal sulfate reduction, and an average biofilm-biomass density of 96 kg TS/m3. To achieve those criteria, the following model parameters were adjusted: rate for methanol addition, biofilm thickness, SRF volumes, and biofilm-detachment rates. The most important parameter for achieving all the goals was the methanol addition ratio: 3.56 g COD/g NO3-N. Another important outcome was that the high-flow-rate scenarios required a larger total SRF volume to achieve target nitrate and Se-oxyanion reductions. The results of the simulations can be used to estimate biofilm characteristics and optimize the SRF configuration and treatment operation.
ContributorsKuo, Jacqueline (Author) / Rittmann, Bruce E (Thesis advisor) / Boltz, Joshua P (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2023
156009-Thumbnail Image.png
Description
Amorphous materials can be uniformly deposited over a large area at lower cost compared to crystalline semiconductors (Silicon or Germanium). This property along with its high resistivity and wide band-gap found many applications in devices like rectifiers, xerography, xero-radiography, ultrahigh sensitivity optical cameras, digital radiography, and mammography (2D and 3D

Amorphous materials can be uniformly deposited over a large area at lower cost compared to crystalline semiconductors (Silicon or Germanium). This property along with its high resistivity and wide band-gap found many applications in devices like rectifiers, xerography, xero-radiography, ultrahigh sensitivity optical cameras, digital radiography, and mammography (2D and 3D tomosynthesis). Amorphous selenium is the only amorphous material that undergoes impact ionization where only holes avalanche at high electric fields. This leads to a small excess noise factor which is a very important performance comparison matrix for avalanche photodetectors. Thus, there is a need to model high field avalanche process in amorphous selenium. At high fields, the transport in amorphous selenium changes from low values of activated trap-limited drift mobility to higher values of band transport mobility, via extended states. When the transport shifts from activated mobility with a high degree of localization to extended state band transport, the wavefunction of the amorphous material resembles that of its crystalline counterpart. To that effect, crystalline monoclinic selenium which has the closest resemblance to vapor deposited amorphous selenium has been studied. Modelling a crystalline semiconductor makes calculations simpler. The transport phenomena in crystalline monoclinic selenium is studied by using a bulk Monte Carlo technique to solve the semi-classical Boltzman Transport equation and thus calculate vital electrical parameters like mobility, critical field and mobility variations against temperatures. The band structure and the density of states function for monoclinic selenium was obtained by using an atomistic simulation tool, the Atomistic Toolkit in the Virtual Nano Lab, Quantum Wise, Copenhagen, Denmark. Moreover, the velocity and energy against time characteristics have been simulated for a wide range of electric fields (1-1000 $\frac{kV}{cm}$), which is further used to find the hole drift mobility. The low field mobility is obtained from the slope of the velocity vs. electric field plot. The low field hole mobility was calculated to be 5.51 $\frac{cm^{2}}{Vs}$ at room temperature. The experimental value for low field hole mobility is 7.29 $\frac{cm^{2}}{Vs}$. The energy versus electric field simulation at high fields is used to match the experimental onset of avalanche (754 $\frac{kV}{cm}$) for an ionization threshold energy of 2.1 eV. The Arrhenius plot for mobility against temperature is simulated and compared with published experimental data. The experimental and simulation results show a close match, thus validating the study.
ContributorsMukherjee, Atreyo (Author) / Vasileska, Dragica (Thesis advisor) / Goldan, Amirhossein (Thesis advisor) / Goodnick, Stephen (Committee member) / Arizona State University (Publisher)
Created2017