Matching Items (6)
Filtering by

Clear all filters

135407-Thumbnail Image.png
Description
This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time

This research attempts to determine the most effective method of synthesizing a peptide such that it can be utilized as a targeting moiety for polymeric micelles. Two melanoma-associated peptides with high in vitro and in vivo binding affinity for TNF receptors have been identified and synthesized. Matrix Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-ToF) was used to help verify the structure of both peptides, which were purified using Reversed-Phase High Performance Liquid Chromatography (RP-HPLC). The next steps in the research are to attach the peptides to a micelle and determine their impact on micelle stability.
ContributorsMoe, Anna Marguerite (Author) / Green, Matthew (Thesis director) / Jones, Anne (Committee member) / Sullivan, Millicent (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
189276-Thumbnail Image.png
Description
Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using

Various research papers and literature were reviewed and consulted for the depolymerization of polyethylene terephthalate (PET) using long chain alkyl amines and ethylene glycol (EG) as catalyst in the aminolysis process. The main hypothesis of this thesis is to use EG as a catalyst in the aminolysis of PET using octylamine, dodecylamine and hexadecylamine. Initial reactions with the three amines were performed with and without EG to observe and compare the terephthalamides obtained from these reactions to test this hypothesis. Various reaction conditions like concentration of reactants, temperature and time of reaction were later considered and employed to find the optimal conditions for the depolymerization of PET before confirming the catalytic properties of EG in the aminolysis reaction. The depolymerized products were subjected to attenuated total reflectance-infrared spectroscopy (ATR-IR Spectroscopy) to check for presence of important amide and ester peaks through their infrared absorption peaks, thermogravimetric analysis (TGA) to find their Td5 temperatures and differential scanning calorimetry (DSC) to check for endothermic melting temperature of the obtained products. These characterization techniques were used to understand, examine, and compare the different properties of the products obtained from different reaction mixtures. The three distinct amines considered for this reaction also showed differences in the conversion rate of PET under similar reaction conditions thus signifying the importance of selecting an appropriate amine reactant for the aminolysis process. Finally, the in-situ IR probe was used to determine the reaction kinetics of the aminolysis reaction and the formation and loss of products and reactants with time.
ContributorsBakkireddy, Adarsh (Author) / Green, Matthew (Thesis advisor) / Emady, Heather (Committee member) / Seo, Eileen S. (Committee member) / Arizona State University (Publisher)
Created2023
171680-Thumbnail Image.png
Description
High-Density polyethylene (HDPE) is the most used polymer on earth. Since it is used in such large quantities, it has become the most extensively produced polymer on the planet. Unfortunately, the rate of reusing or recycling HDPE is far behind the rate of production leading to plastic pollution. Most of

High-Density polyethylene (HDPE) is the most used polymer on earth. Since it is used in such large quantities, it has become the most extensively produced polymer on the planet. Unfortunately, the rate of reusing or recycling HDPE is far behind the rate of production leading to plastic pollution. Most of this waste plastic ends up in landfills or incineration to recover energy. Plastic production consumes a lot of energy and is associated with CO2 emissions. This method of disposing plastic only adds to the environmental pollution rather than improving it. Primary reasons for low recycling rate appear to be more political and financial. In the US, the rate of recycling was less than 10% whereas Japan showed a recycling rate of more than 80%. The other aspect of low recycling is financial. In order to make recycling a financially viable process, efforts have to be made to streamline the process of waste collection, segregation and technically feasible process. This study focusses on the technical aspect of the issue. Even though efforts have been made to recycle HDPE, none of the processes have been recycle HDPE with financial viability, recovering full value of plastic, minimum CO2 emissions and minimum change in properties of the polymer. This study focusses on effective recycling of HDPE with minimum change in its properties. Dissolution has been used to dissolve the polymer selectively and then reprecipitating the polymer using a non-solvent to obtain the polymer grains. This is followed by mixing additives to the polymer grains to minimize degradation of the polymer during the extrusion process. The polymer is then extruded in an extruder beyond its melting temperature. This process is repeated for 5 cycles. After each cycle, the polymer is tested for its properties using the Tensile Testing, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Dynamic Mechanicalii Analysis (DMA). It was observed that the rheological properties of the polymer were maintained after the 5th recycle whereas the mechanical properties deteriorated after the 2nd recycle. Also, increase in carbonyl index was observed after 5th recycle.
ContributorsSaini, Rahul Rakesh (Author) / Green, Matthew (Thesis advisor) / Holloway, Julianne (Committee member) / Xie, Renxuan (Committee member) / Arizona State University (Publisher)
Created2022
193447-Thumbnail Image.png
Description
As society moves to reduce the effects of climate change, there is a growing needfor the use of polymer science in technologies to mitigate the emission of carbon dioxide. Networks containing quaternary ammonium groups with corresponding HCO3 ions providing the mobile counter-charge in the networks have been reported to capture carbon dioxide directly

As society moves to reduce the effects of climate change, there is a growing needfor the use of polymer science in technologies to mitigate the emission of carbon dioxide. Networks containing quaternary ammonium groups with corresponding HCO3 ions providing the mobile counter-charge in the networks have been reported to capture carbon dioxide directly from the atmosphere through a moisture swing mechanism, among other mechanisms. In this work, microstructural analysis of synthesized polystyrene-based anion exchange networks is conducted using known characterization techniques to better understand if variations in sorbent microstructure adjust the distances between the quaternary ammonium groups. Additional surface morphology studies of these sorbents are conducted. X-Ray Diffraction (XRD) spectra reveal the amorphous structure of these polymers and the ability to adjust the distance between quaternary ammonium groups by introducing different spacer groups and various anions into the networks, which may affect the spontaneity of the CO2 to chemisorb to these sorbents. However, Wide Angle X-Ray Scattering (WAXS) conflicts with the XRD data, indicating a change in distance between these groups is not achieved. Additionally, WAXS data indicates an ability to increase the homogeneity of structure in these materials by introducing larger counterions into the networks. Small Angle X-Ray Scattering (SAXS) reveals no obvious large morphological features in these sorbents, which is supported by Scanning Electron Microscopy (SEM) images. In conclusion, XRD and WAXS experiments exhibit conflicting data regarding the ability to adjust the distances between the quaternary ammonium groups in these networks. Proposed actions to resolve this conflict are presented. Finally, SEM sheds light on particle size and morphological features of these materials.
ContributorsBenard, Emmie Marie (Author) / Green, Matthew (Thesis advisor) / Jin, Kailong (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2024
193451-Thumbnail Image.png
Description
The properties of block polymers (BPs) are intricately coupled to the dynamic and rich nature of the nanostructured assemblies which result from the phase separation between blocks. The introduction of strong secondary forces, such as electrostatics and hydrogen bonding, into block polymers greatly influences their self-assembly behavior, and therefore affects

The properties of block polymers (BPs) are intricately coupled to the dynamic and rich nature of the nanostructured assemblies which result from the phase separation between blocks. The introduction of strong secondary forces, such as electrostatics and hydrogen bonding, into block polymers greatly influences their self-assembly behavior, and therefore affects their physical and electrochemical properties often in non-trivial ways. The recent surge of work expanding scientific understanding of complex spherical packing in block polymers (BPs) has unlocked new design space for the development of advanced soft materials. The continuous matrix phase which percolates throughout spherical morphologies is ideal for many applications involving transport of ions or other small molecules. Thus, determining the accessible parameter range of such morphologies is desirable. Bulk zwitterion-containing BPs hold great potential within the realm of electroactive materials while remaining relatively untapped. In this work, architecturally and compositionally asymmetric diblock polymers were prepared with the majority block having zwitterions tethered to side chain termini at different ratios. Thermally reversible Frank-Kasper phases are observed in multiple samples with significant signs of kinetic arrest and influence. The kinetic influences are validated and described by the temperature-dependent static permittivity. Polyzwitterions combine the attractive features of zwitterions with the mechanical support and processability of polymeric materials. Among these attractive features is a potential for superior permittivity which is limited by the propensity of zwitterions to pack into strongly associating structures. Block polymer self-assembly embodies a plethora of packing frustration opportunities for optimizing polyzwitterion permittivity. The capabilities of this novel approach are revealed here, where the permittivity of a polyzwitterionic block is enhanced to a level comparable to that of pure liquid zwitterions near room temperature (εs ~ 250), but with less than a third the zwitterion concentration. The mechanistic source of permittivity enhancement from a single zwitterion-tethered block polymer is realized deductively through a series of thermal pathways and control sample experiments. Tethered zwitterions within the mixed block interface are frustrated when subject to segmental segregation under sufficient interfacial tension and packing while non-interfacial zwitterions contribute very little to permittivity, highlighting the potential for improvement by several fold.
ContributorsGrim, Bradley James (Author) / Green, Matthew (Thesis advisor) / Long, Timothy (Committee member) / Richert, Ranko (Committee member) / Jin, Kailong (Committee member) / Seo, S. Eileen (Committee member) / Arizona State University (Publisher)
Created2024
158546-Thumbnail Image.png
Description
As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one

As experiencing hot months and thermal stresses is becoming more common, chemically protective fabrics must adapt and provide protections while reducing the heat stress to the body. These concerns affect first responders, warfighters, and workers regularly surrounded by hazardous chemical agents. While adapting traditional garments with cooling devices provides one route to mitigate this issue, these cooling methods add bulk, are time limited, and may not be applicable in locations without logistical support. Here I take inspiration from nature to guide the development of smart fabrics that have high breathability, but self-seal on exposure to target chemical(s), providing a better balance between cooling and protection.

Natural barrier materials were explored as a guide, focusing specifically on prickly pear cacti. These cacti have a natural waxy barrier that provides protection from dehydration and physically changes shape to modify surface wettability and water vapor transport. The results of this study provided a basis for a shape changing polymer to be used to respond directly to hazardous chemicals, swelling to contain the agent.

To create a stimuli responsive material, a novel superabsorbent polymer was synthesized, based on acrylamide chemistry. The polymer was tested for swelling properties in a wide range of organic liquids and found to highly swell in moderately polar organic liquids. To help predict swelling in untested liquids, the swelling of multiple test liquids were compared with their thermodynamic properties to observe trends. As the smart fabric needs to remain breathable to allow evaporative cooling, while retaining functionality when soaked with sweat, absorption of water, as well as that of an absorbing liquid in the presence of water were tested.

Micron sized particles of the developed polymer were deposited on a plastic mesh with pore size and open area similar to common clothing fabric to establish the proof of concept of using a breathable barrier to provide chemical protection. The polymer coated mesh showed minimal additional resistance to water vapor transport, relative to the mesh alone, but blocked more than 99% of a xylene aerosol from penetrating the barrier.
ContributorsManning, Kenneth (Author) / Rykaczewski, Konrad (Thesis advisor) / Burgin, Timothy (Committee member) / Emady, Heather (Committee member) / Green, Matthew (Committee member) / Thomas, Marylaura (Committee member) / Arizona State University (Publisher)
Created2020