Matching Items (467)
Filtering by

Clear all filters

ContributorsChan, Robbie (Performer) / McCarrel, Kyla (Performer) / Sadownik, Stephanie (Performer) / ASU Library. Music Library (Contributor)
Created2018-04-18
151465-Thumbnail Image.png
Description
Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on

Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a priori information and user-specified model parameters. Also, ECG beat morphologies, which vary greatly across patients and disease states, cannot be uniquely characterized by a single model. In this work, sequential Bayesian based methods are used to appropriately model and adaptively select the corresponding model parameters of ECG signals. An adaptive framework based on a sequential Bayesian tracking method is proposed to adaptively select the cardiac parameters that minimize the estimation error, thus precluding the need for pre-processing. Simulations using real ECG data from the online Physionet database demonstrate the improvement in performance of the proposed algorithm in accurately estimating critical heart disease parameters. In addition, two new approaches to ECG modeling are presented using the interacting multiple model and the sequential Markov chain Monte Carlo technique with adaptive model selection. Both these methods can adaptively choose between different models for various ECG beat morphologies without requiring prior ECG information, as demonstrated by using real ECG signals. A supervised Bayesian maximum-likelihood (ML) based classifier uses the estimated model parameters to classify different types of cardiac arrhythmias. However, the non-availability of sufficient amounts of representative training data and the large inter-patient variability pose a challenge to the existing supervised learning algorithms, resulting in a poor classification performance. In addition, recently developed unsupervised learning methods require a priori knowledge on the number of diseases to cluster the ECG data, which often evolves over time. In order to address these issues, an adaptive learning ECG classification method that uses Dirichlet process Gaussian mixture models is proposed. This approach does not place any restriction on the number of disease classes, nor does it require any training data. This algorithm is adapted to be patient-specific by labeling or identifying the generated mixtures using the Bayesian ML method, assuming the availability of labeled training data.
ContributorsEdla, Shwetha Reddy (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2012
151631-Thumbnail Image.png
Description
Whenever a text is transmitted, or communicated by any means, variations may occur because editors, copyists, and performers are often not careful enough with the source itself. As a result, a flawed text may come to be accepted in good faith through repetition, and may often be preferred over the

Whenever a text is transmitted, or communicated by any means, variations may occur because editors, copyists, and performers are often not careful enough with the source itself. As a result, a flawed text may come to be accepted in good faith through repetition, and may often be preferred over the authentic version because familiarity with the flawed copy has been established. This is certainly the case with regard to Manuel M. Ponce's guitar editions. An inexact edition of a musical work is detrimental to several key components of its performance: musical interpretation, aesthetics, and the original musical concept of the composer. These phenomena may be seen in the case of Manuel Ponce's Suite in D Major for guitar. The single published edition by Peer International Corporation in 1967 with the revision and fingering of Manuel López Ramos contains many copying mistakes and intentional, but unauthorized, changes to the original composition. For the present project, the present writer was able to obtain a little-known copy of the original manuscript of this work, and to document these discrepancies in order to produce a new performance edition that is more closely based on Ponce's original work.
ContributorsReyes Paz, Ricardo (Author) / Koonce, Frank (Thesis advisor) / Solis, Theodore (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsDaval, Charles (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26
ContributorsMayo, Joshua (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-29
ContributorsDominguez, Ramon (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-15
ContributorsWhite, Bill (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-03
ContributorsSanchez, Armand (Performer) / Nordstrom, Nathan (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-13
ContributorsMiranda, Diego (Performer)
Created2018-04-06