Matching Items (2)
135090-Thumbnail Image.png
Description
The thesis outlines five feasible technologies that can be implemented to assist Arizona State University (ASU) in its attempt to increase its water sustainability practices. After collaborating with internal contacts from ASU's Sustainability department, a plan was initiated to research, inform, and recommend the best technological solution and potential vendor

The thesis outlines five feasible technologies that can be implemented to assist Arizona State University (ASU) in its attempt to increase its water sustainability practices. After collaborating with internal contacts from ASU's Sustainability department, a plan was initiated to research, inform, and recommend the best technological solution and potential vendor for ASU. Information on the vendor is included in the analysis describing the company's history, its service offerings, and application of the technology mentioned using case studies. Potential vendors were contact by phone and additional research was conducted using the each of the company's website to gather more information such a charts and graphs. ASU's current negotiations with its main vendor, Sustainable Water, assisted in establishing benchmarks needed to be able to compare other potential vendors. Each technology was researched extensively using metrics such as energy efficiency, aesthetics, footprint, purification capacity, and odor. The team had difficulties gathering specific data due to the hesitations of companies divulging proprietary information. As much information was gathered to analyze and provide a comparison with each vendor using a ranked and weighted system. Rating the technologies took into considerations the needs of ASU, the offerings of the potential vendor, and the technological capacities and capabilities. The technologies mentioned each had distinct features differing it from one another. However, each technology also had its tradeoffs. Ultimately, it was found that the most feasible, realistic and most aesthetically pleasing solution was Sustainable Water. After careful analysis, it is recommended to continue discussions with Sustainable Water to meet the needs and goals of ASU's water sustainability initiatives.
ContributorsReid, Tatiana (Co-author) / MacDonaldo, Ariane (Co-author) / Printezis, Antonios (Thesis director) / Alberhasky, JoEllen (Committee member) / Department of Supply Chain Management (Contributor) / Department of Finance (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152626-Thumbnail Image.png
Description
The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular

The influence of climate variability and reclaimed wastewater on the water supply necessitates improved understanding of the treatability of trace and bulk organic matter. Dissolved organic matter (DOM) mobilized during extreme weather events and in treated wastewater includes natural organic matter (NOM), contaminants of emerging concern (CECs), and microbial extracellular polymeric substances (EPS). The goal of my dissertation was to quantify the impacts of extreme weather events on DOM in surface water and downstream treatment processes, and to improve membrane filtration efficiency and CECs oxidation efficiency during water reclamation with ozone. Surface water quality, air quality and hydrologic flow rate data were used to quantify changes in DOM and turbidity following dust storms, flooding, or runoff from wildfire burn areas in central Arizona. The subsequent impacts to treatment processes and public perception of water quality were also discussed. Findings showed a correlation between dust storm events and change in surface water turbidity (R2=0.6), attenuation of increased DOM through reservoir systems, a 30-40% increase in organic carbon and a 120-600% increase in turbidity following severe flooding, and differing impacts of upland and lowland wildfires. The use of ozone to reduce membrane fouling caused by vesicles (a subcomponent of EPS) and oxidize CECs through increased hydroxyl radical (HO●) production was investigated. An "ozone dose threshold" was observed above which addition of hydrogen peroxide increased HO● production; indicating the presence of ambient promoters in wastewater. Ozonation of CECs in secondary effluent over titanium dioxide or activated carbon did not increase radial production. Vesicles fouled ultrafiltration membranes faster (20 times greater flux decline) than polysaccharides, fatty acids, or NOM. Based upon the estimated carbon distribution of secondary effluent, vesicles could be responsible for 20-60% of fouling during ultrafiltration and may play a vital role in other environmental processes as well. Ozone reduced vesicle-caused membrane fouling that, in conjunction with the presence of ambient promoters, helps to explain why low ozone dosages improve membrane flux during full-scale water reclamation.
ContributorsBarry, Michelle (Author) / Barry, Michelle C (Thesis advisor) / Westerhoff, Paul (Committee member) / Fox, Peter (Committee member) / Halden, Rolf (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2014