Matching Items (28)
151414-Thumbnail Image.png
Description
The hypothalamus pituitary adrenal (HPA) axis and the human genome are important components of the biological etiology of externalizing disorders. By studying the associations between specific genetic variants, diurnal cortisol, and externalizing symptoms we can begin to unpack this complex etiology. It was hypothesized that genetic variants from the corticotropine

The hypothalamus pituitary adrenal (HPA) axis and the human genome are important components of the biological etiology of externalizing disorders. By studying the associations between specific genetic variants, diurnal cortisol, and externalizing symptoms we can begin to unpack this complex etiology. It was hypothesized that genetic variants from the corticotropine releasing hormone receptor 1 (CRHR1), FK506 binding protein 51 (FKBP5), catechol-O-methyl transferase (COMT), and dopamine transporter (DAT1) genes and diurnal cortisol intercepts and slopes would separately predict externalizing symptoms. It was also hypothesized that genetic variants would moderate the association between cortisol and externalizing. Participants were 800 twins (51% boys), 88.5% Caucasian, M=7.93 years (SD=0.87) participating in the Wisconsin Twin Project. Hierarchical Linear Modeling (HLM) was used to separate the variance associated with state and trait cortisol measured across three consecutive days and trait cortisol measures were used. There were no main effects of genes on externalizing symptoms. The evening cortisol intercept, the morning cortisol slope and the evening cortisol slope predicted externalizing, but only in boys, such that boys with higher cortisol and flatter slopes across the day also had more externalizing symptoms. The morning cortisol intercept and CRHR1 rs242924 interacted to predict externalizing in both boys and girls, with GG carriers significantly higher compared to TT carriers at one standard deviation below the mean of morning cortisol. For boys only there was a significant interaction between the DAT1 variable number tandem repeat (VNTR) and the afternoon slope and a significant slope for 9/9 carriers and 9/10 carriers such that when the slope was more steep, boys carrying a nine had fewer externalizing symptoms but when the slope was less steep, they had more. Results confirm a link between diurnal trait cortisol and externalizing in boys, as well as moderation of that association by genetic polymorphisms. This is the first study to empirically examine this association and should encourage further research on the biological etiology of externalizing disorder symptoms.
ContributorsSwann, Gregory (Author) / Lemery-Chalfant, Kathryn (Thesis advisor) / Chassin, Laurie (Committee member) / Doane-Sampey, Leah (Committee member) / Arizona State University (Publisher)
Created2012
136206-Thumbnail Image.png
Description
To identify genes that can lead to obesity of Pima Native American heritage, an array of experiments can be conducted to determine possible candidate genes that can increase the likelihood of being obese in a set population. The studies available to identify these genes were (1) inspect follow-up genes identified

To identify genes that can lead to obesity of Pima Native American heritage, an array of experiments can be conducted to determine possible candidate genes that can increase the likelihood of being obese in a set population. The studies available to identify these genes were (1) inspect follow-up genes identified by a previous genome wide associations studies, GWAS, previously conducted for the 1120 American Indian subjects data available, (2) to directly sequence candidate genes in literature, (3) to analyze whole sequence data from Native American subjects, and lastly (4) to perform functional studies on most promising variants associated with BMI. Analyzing the results presented from my work required the use of biological techniques such as: DNA sequencing, DNA large scale genotyping, PCR amplification, DNA transfections, DNA ligations, in vitro Luciferase assay and Cell culture. Inspecting the follow-up genes identified by the conducted GWAS showed the potential for the MAP2K3 gene to be a candidate to increase obesity in the set population, involve two single nucleotide polymorphisms (SNPs, rs12882548, rs11652094), to affect body weight through complex mechanisms involving food intake and hypothalamic inflammation. The follow-up genes identified in the GWAS that had an effect on obesity showed to affect it through the mechanism of reducing energy expenditure. Through the analysis of SNPs two variants (rs10507100 and rs17087518) were identified to test their roles in the reduction of energy expenditure. Rs17087518 showed to have a role in a relatively reduced EE resulting in weight gain. Directly sequencing a candidate gene known as MRAP2 showed that the SNP rs1928281 did not have a significant difference on obesity in the Native American subjects (p =.09). Analyzing whole genome sequencing SNPs gave rise to novel variants by association analyses with energy expenditure and BMI in 235 whole genomes, the most significant SNP, rs4984683, was examined to determine the variability in energy expenditures. With set quality control assessment a list of variants were received and were then later assessed with other data available to make a connection to EE. Performing functional studies showed the possibility for rs2001651 and rs1466314 to have an effect on MAP2K3 expression level. The initial functional studies gave way to a more in-depth study of this gene to predict BMI in Caucasians and Native Americans, which in turn showed an association with BMI. The use of these techniques have been an indicator for current research in the determination of candidate genes across many diseases. The works presented is an example of the current works in genetics and an exploration of new mechanism to detect, and possibly treat, disease through personalized sequencing.
ContributorsGale, Alex Mauricio Pompa (Author) / Ankeny, Casey (Thesis director) / Baier, Leslie (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2015-05
134975-Thumbnail Image.png
Description
Schizophrenia risk is influenced by both genetic and environmental factors. The immediate early gene early growth response 3 (Egr3), is regulated downstream of several schizophrenia risk genes and encodes a zinc-finger transcription factor protein. Previous studies from our lab indicate that Egr3 deficient (Egr3 -/-) mice exhibit schizophrenia-like phenotypes. We

Schizophrenia risk is influenced by both genetic and environmental factors. The immediate early gene early growth response 3 (Egr3), is regulated downstream of several schizophrenia risk genes and encodes a zinc-finger transcription factor protein. Previous studies from our lab indicate that Egr3 deficient (Egr3 -/-) mice exhibit schizophrenia-like phenotypes. We also discovered decreased serotonin 2a receptors (5-HT2AR) in the Egr3 -/- mice, similar to studies that reported decreased 5-HT2ARs in schizophrenia patients. We previously reported that sleep deprivation, a mild stress, causes the over expression of Egr3 and the serotonin 2a gene (Htr2a) in the cortex. To determine whether EGR3, a transcription factor, regulates Htr2a in the prefrontal cortex after sleep deprivation, Egr3 -/-and Egr3 +/+ mice were sleep deprived for eight hours. Transgenic mice were used that expressed enhanced green fluorescent protein (EGFP) under control of the Htr2a promoter via a bacterial artificial chromosome (BAC). Immunohistochemistry was performed to identify EGFP containing cells. Data analysis revealed no significant interaction between genotype and sleep deprivation in 5-HT2AR/EGFP containing cells within the prefrontal cortex. Based on the findings of this study, more data is needed to better determine the relationship between sleep deprivation and its effect on the regulation of Htr2a through in an EGR3 dependent manner.
ContributorsReznik, Derek Lee (Author) / Wilson-Rawls, Jeanne (Thesis director) / Gallitano, Amelia (Committee member) / Anderson, Karen (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
168722-Thumbnail Image.png
Description
Vitamin D is a nutrient that is obtained through the diet and vitamin D supplementation and created from exposure to Ultraviolet B (UVB) radiation. While there are many factors that determine how much serum 25-hydroxyvitamin D (25(OH)D) concentration is in the body, little is known about how genetic variation in

Vitamin D is a nutrient that is obtained through the diet and vitamin D supplementation and created from exposure to Ultraviolet B (UVB) radiation. While there are many factors that determine how much serum 25-hydroxyvitamin D (25(OH)D) concentration is in the body, little is known about how genetic variation in vitamin D-related genes influences serum 25(OH)D concentrations resulting from daily vitamin D intake and exposure to direct sunlight. Previous studies show that common genetic variants rs10741657 (CYP2R1), rs4588 (GC), rs228678 (GC), and rs4516035 (VDR) act as moderators and alter the effect of outdoor time and vitamin D intake on serum 25(OH)D concentrations. The objective of this study is to analyze the associations between serum 25(OH)D concentrations resulting from outdoor time and vitamin D intake, and genetic risk scores (GRS) established from previous studies involving single nucleotide polymorphisms (SNP) located on or near genes involving vitamin D synthesis, transport, activation, and degradation in 102 Hispanic and Non-Hispanic adults in the San Diego County, California. This study is a secondary analysis of data from the Community of Mine study. Global Positioning System (GPS) data collected by the Qstarz GPS device worn by each participant was used to measure outdoor time, a proxy measurement for sun exposure time. Vitamin D intake was assessed using two 24-hour dietary recalls. Blood samples were measured for serum 25(OH)D concentrations. DNA was provided to assess each participant for the various genetic variants. Adjusted analyses of the GRS and serum 25(OH)D concentrations showed that individuals with high GRS (3-4) had lower serum 25(OH)D concentrations than individuals with low GRS (0-2) for both Nissen GRS and Rivera-Paredez GRS.
ContributorsAnderson, Heather Ray (Author) / Sears, Dorothy (Thesis advisor) / Alexon, Christy (Committee member) / Dinu, Valentin (Committee member) / Jankowska, Marta (Committee member) / Arizona State University (Publisher)
Created2022
Description

Our bodies are constantly fighting off viral pathogens both with our external barriers such as skin as well as internally through the immune system. Mucin genes specifically Muc5AC and Muc5B help assist in this process by activating both bacterial and mucus pathogenesis. Their gene expression is correlated with temperature meaning

Our bodies are constantly fighting off viral pathogens both with our external barriers such as skin as well as internally through the immune system. Mucin genes specifically Muc5AC and Muc5B help assist in this process by activating both bacterial and mucus pathogenesis. Their gene expression is correlated with temperature meaning that in warmer temperatures they have decreased expression. Developing a better understanding of their functionality as well as their expression can help species that are in danger of becoming extinct.

ContributorsWang, Dylan (Author) / Kusumi, Kenro (Thesis director) / Benson, Derek (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor)
Created2023-05
175301-Thumbnail Image.jpg
Description

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The to

Between 1934 and 1945, George Beadle developed a hypothesis that each gene within the chromosomes of organisms each produced one enzyme. Enzymes are types of proteins that can catalyze reactions inside cells, and the figure shows that each enzyme controls a stage in a series of biochemical reactions. The top box in this figure represents a normal process of enzyme production and biochemical reactions, and the bottom box shows how Beadle's experiments affected the normal biochemical process. In this figure, each box represents the borders of the cell, and the dashed lines inside the box represent the nucleus. In the normal cell depiction, three genes (represented as colored rectangles) in the nucleus influence the production of three corresponding enzymes (represented as colored squares). The collections of black circles, orange triangles, green squares, and purple circles represent organic molecules, which the enzymes affect through metabolic reactions. In the normal box, gene 3 somehow produces enzyme 3, which catalyzes a reaction in which the first two molecules combine to form a larger molecule. Enzyme 2 catalyzes the second step in the reaction in which the enzyme modifies the chemical composition of the molecule. Enzyme 3 catalyzes the third step in the reaction in which a carbon atom is added to the molecule. This figure also represents an abnormal process (bottommost box) of enzyme production and biochemical reactions. In the abnormal process, X-rays damaged gene 2, preventing the production of enzyme 2. As a result, neither the second nor the third steps of the chemical reaction can occur.

Created2016-10-12
173431-Thumbnail Image.png
Description

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the

Boris Ephrussi and George Wells Beadle developed a transplantation technique on flies, Drosophila melanogaster, which they described in their 1936 article A Technique of Transplantation for Drosophila. The technique of injecting a tissue from one fly larva into another fly larva, using a micropipette, to grow that tissue in the second larvae, was a means for investigating development of Drosophila. Through this technique, Beadle and Ephrussi studied the role of genes in embryological processes. Beadle and Ephrussi were the first to apply the transplantation method, which had previously been used in the study of larger insects, to the smaller sized Drosophila. Beadle and Ephrussi used this method of transplantation to determine if parts of the optic disc, the section of a larvae that later become the eye buds in the adult, could be extracted from one larva and transplanted into another. They later built upon this research to relate the production of molecules in cells to gene function.

Created2014-06-29
Description

In April 1953, James Watson and Francis Crick published “Molecular Structure of Nucleic Acids: A Structure of Deoxyribose Nucleic Acid” or “A Structure for Deoxyribose Nucleic Acid,” in the journal Nature. In the article, Watson and Crick propose a novel structure for deoxyribonucleic acid or DNA. In 1944, Oswald T.

In April 1953, James Watson and Francis Crick published “Molecular Structure of Nucleic Acids: A Structure of Deoxyribose Nucleic Acid” or “A Structure for Deoxyribose Nucleic Acid,” in the journal Nature. In the article, Watson and Crick propose a novel structure for deoxyribonucleic acid or DNA. In 1944, Oswald T. Avery and his group at Rockefeller University in New York City, New York published experimental evidence that DNA contained genes, the biological factors called genes that dictate how organisms grow and develop. Scientists did not know how DNA’s function led to the passage of genetic information from cell to cell, or organism to organism. The model that Watson and Crick presented connected the concept of genes to heredity, growth, and development. As of 2018, most scientists accept Watson and Crick’s model of DNA presented in the article. For their work on DNA, Watson and Crick shared the 1962 Nobel Prize in Physiology or Medicine with Maurice Wilkins.

Created2019-10-31
173251-Thumbnail Image.png
Description

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed by planarians in response to wounds that initiated a regenerative mechanism. The researchers determined several genes as important for tissue regeneration. The investigation helped scientists explain how regeneration is initiated and describe the overall regenerative mechanism of whole organisms.

Created2017-05-09
173342-Thumbnail Image.png
Description

In 1956, Gunther Stent, a scientist at the University of California Berkeley in Berkeley, California, coined the terms conservative, semi-conservative, and dispersive to categorize the prevailing theories about how DNA replicated. Stent presented a paper with Max Delbrück titled “On the Mechanism of DNA Replication” at the McCollum-Pratt Symposium at

In 1956, Gunther Stent, a scientist at the University of California Berkeley in Berkeley, California, coined the terms conservative, semi-conservative, and dispersive to categorize the prevailing theories about how DNA replicated. Stent presented a paper with Max Delbrück titled “On the Mechanism of DNA Replication” at the McCollum-Pratt Symposium at Johns Hopkins University in Baltimore, Maryland. In response to James Watson and Francis Crick’s proposed structure of DNA in 1953, scientists debated how DNA replicated. Throughout the debate, scientists hypothesized different theories about how DNA replicated, but none of the theories had sound experimental data. Stent introduced DNA replication classes that, if present in DNA, would yield distinct experimental results. Conservative, semi-conservative, and dispersive DNA replication categories shaped scientists' research into how DNA replicated, which led to the conclusion that DNA replicated semi-conservatively.

Created2019-10-31