Matching Items (5)
Filtering by

Clear all filters

152284-Thumbnail Image.png
Description
Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at

Electromigration in metal interconnects is the most pernicious failure mechanism in semiconductor integrated circuits (ICs). Early electromigration investigations were primarily focused on aluminum interconnects for silicon-based ICs. An alternative metallization compatible with gallium arsenide (GaAs) was required in the development of high-powered radio frequency (RF) compound semiconductor devices operating at higher current densities and elevated temperatures. Gold-based metallization was implemented on GaAs devices because it uniquely forms a very low resistance ohmic contact and gold interconnects have superior electrical and thermal conductivity properties. Gold (Au) was also believed to have improved resistance to electromigration due to its higher melting temperature, yet electromigration reliability data on passivated Au interconnects is scarce and inadequate in the literature. Therefore, the objective of this research was to characterize the electromigration lifetimes of passivated Au interconnects under precisely controlled stress conditions with statistically relevant quantities to obtain accurate model parameters essential for extrapolation to normal operational conditions. This research objective was accomplished through measurement of electromigration lifetimes of large quantities of passivated electroplated Au interconnects utilizing high-resolution in-situ resistance monitoring equipment. Application of moderate accelerated stress conditions with a current density limited to 2 MA/cm2 and oven temperatures in the range of 300°C to 375°C avoided electrical overstress and severe Joule-heated temperature gradients. Temperature coefficients of resistance (TCRs) were measured to determine accurate Joule-heated Au interconnect film temperatures. A failure criterion of 50% resistance degradation was selected to prevent thermal runaway and catastrophic metal ruptures that are problematic of open circuit failure tests. Test structure design was optimized to reduce resistance variation and facilitate failure analysis. Characterization of the Au microstructure yielded a median grain size of 0.91 ìm. All Au lifetime distributions followed log-normal distributions and Black's model was found to be applicable. An activation energy of 0.80 ± 0.05 eV was measured from constant current electromigration tests at multiple temperatures. A current density exponent of 1.91 was extracted from multiple current densities at a constant temperature. Electromigration-induced void morphology along with these model parameters indicated grain boundary diffusion is dominant and the void nucleation mechanism controlled the failure time.
ContributorsKilgore, Stephen (Author) / Adams, James (Thesis advisor) / Schroder, Dieter (Thesis advisor) / Krause, Stephen (Committee member) / Gaw, Craig (Committee member) / Arizona State University (Publisher)
Created2013
151236-Thumbnail Image.png
Description
With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage

With increasing concerns of the intrinsic toxicity of lead (Pb) in electronics, a series of tin (Sn) based alloys involving silver (Ag) and copper (Cu) have been proposed as replacements for Pb-Sn solder and widely accepted by industry. However, they have a higher melting point and often exhibit poorer damage tolerance than Pb-Sn alloys. Recently, a new class of alloys with trace amount of rare-earth (RE) elements has been discovered and investigated. In previous work from Prof. Chawla's group, it has been shown that cerium (Ce)-based Pb-free solder are less prone to oxidation and Sn whiskering, and exhibit desirable attributes of microstructural refinement and enhanced ductility relative to lanthanum (La)-based Sn-3.9Ag-0.7Cu (SAC) alloy. Although the formation of RESn3 was believed to be directly responsible for the enhanced ductility in RE-containing SAC solder by allowing microscopic voids to nucleate throughout the solder volume, this cavitation-based mechanism needs to be validated experimentally and numerically. Additionally, since the previous study has exhibited the realistic feasibility of Ce-based SAC lead-free solder alloy as a replacement to conventional SAC alloys, in this study, the proposed objective focuses on the in in-depth understanding of mechanism of enhanced ductility in Ce-based SAC alloy and possible issues associated with integration of this new class of solder into electronic industry, including: (a) study of long-term thermal and mechanical stability on industrial metallization, (b) examine the role of solder volume and wetting behavior of the new solder, relative to Sn-3.9Ag-0.7Cu alloys, (c) conduct experiments of new solder alloys in the form of mechanical shock and electromigration. The research of this new class alloys will be conducted in industrially relevant conditions, and the results would serve as the first step toward integration of these new, next generation solders into the industry.
ContributorsXie, Huxiao (Author) / Chawla, Nikhilesh (Thesis advisor) / Krause, Stephen (Committee member) / Solanki, Kiran (Committee member) / Mirpuri, Kabir (Committee member) / Arizona State University (Publisher)
Created2012
135678-Thumbnail Image.png
Description
The constant evolution of technology has greatly shifted the way in which we gain knowledge information. This, in turn, has an affect on how we learn. Long gone are the days where students sit in libraries for hours flipping through numerous books to find one specific piece of information. With

The constant evolution of technology has greatly shifted the way in which we gain knowledge information. This, in turn, has an affect on how we learn. Long gone are the days where students sit in libraries for hours flipping through numerous books to find one specific piece of information. With the advent of Google, modern day students are able to arrive at the same information within 15 seconds. This technology, the internet, is reshaping the way we learn. As a result, the academic integrity policies that are set forth at the college level seem to be outdated, often prohibiting the use of technology as a resource for learning. The purpose of this paper is to explore why exactly these resources are prohibited. By contrasting a subject such as Computer Science with the Humanities, the paper explores the need for the internet as a resource in some fields as opposed to others. Taking a look at the knowledge presented in Computer Science, the course structure, and the role that professors play in teaching this knowledge, this thesis evaluates the epistemology of Engineering subjects. By juxtaposing Computer Science with the less technology reliant humanities subjects, it is clear that one common policy outlining academic integrity does not suffice for an entire university. Instead, there should be amendments made to the policy specific to each subject, in order to best foster an environment of learning at the university level. In conclusion of this thesis, Arizona State University's Academic Integrity Policy is analyzed and suggestions are made to remove ambiguity in the language of the document, in order to promote learning at the university.
ContributorsMohan, Sishir Basavapatna (Author) / Brake, Elizabeth (Thesis director) / Martin, William (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
152197-Thumbnail Image.png
Description
Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current

Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current density is of great concern affecting the reliability of the entire microelectronics systems. This paper reviews electromigration in Pb- free solders, focusing specifically on Sn0.7wt.% Cu solder joints. Effect of texture, grain orientation, and grain-boundary misorientation angle on electromigration and intermetallic compound (IMC) formation is studied through EBSD analysis performed on actual C4 bumps.
ContributorsLara, Leticia (Author) / Tasooji, Amaneh (Thesis advisor) / Lee, Kyuoh (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
187708-Thumbnail Image.png
Description
Thirty percent of engineering students suffer from extremely severe stress, which is associated with poor academic performance, decreased motivation, and poor mental health. As a result, new, effective techniques must be developed to improve student outcomes. A potential technique that could be valuable in the classroom is persuasion techniques. There

Thirty percent of engineering students suffer from extremely severe stress, which is associated with poor academic performance, decreased motivation, and poor mental health. As a result, new, effective techniques must be developed to improve student outcomes. A potential technique that could be valuable in the classroom is persuasion techniques. There are six primary persuasion techniques: reciprocity, liking, social proof, scarcity, commitment, and authority (coercive and expert). Persuasion has been studied exhaustively with respect to altering behavior (e.g., sales, compliance), but has only briefly been studied in education. Studies show that positive student-teacher relationships can improve grades, positive peer relationships can improve mental health, and coercive power can increase stress. No studies have examined all persuasion techniques with respect to student outcomes, and this study aims to fill that gap. The objective of this study is to evaluate the use of persuasion techniques in the classroom to improve mental health and enhance academic outcomes. I hypothesized that methods that enhance community and improve sense of belonging (reciprocity, commitment, liking, social proof) will lead to better academic and mental health outcomes, and methods associated with negative professor attitudes (coercive authority) will lead to poor academic and mental health outcomes. To evaluate these hypotheses, a sample of 336 university students were surveyed to see which persuasion techniques they perceived their professors to use and examine the effects of these on academic outcomes (grades, attendance, assignments) and mental health outcomes (engagement, positive impact, stress, well-being, executive function). The data partially supports the hypotheses, with various student academic and mental health outcomes significantly improving with higher use of liking, social proof, commitment, and expert authority, and worsening with higher use of coercive authority. In conclusion, by teaching professors to use liking, social proof, expert authority, and commitment in their classrooms while decreasing coercive techniques, professors can effectively improve student grades and mental health.
ContributorsPautz, Daniella Joy (Author) / Honeycutt, Claire F (Thesis advisor) / Smith, Barbara S (Committee member) / Middleton, James A (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2023