Matching Items (2,118)
Filtering by

Clear all filters

153169-Thumbnail Image.png
Description
Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to

Climate change will result not only in changes in the mean state of climate but also on changes in variability. However, most studies of the impact of climate change on ecosystems have focused on the effect of changes in the central tendency. The broadest objective of this thesis was to assess the effects of increased interannual precipitation variation on ecosystem functioning in grasslands. In order to address this objective, I used a combination of field experimentation and data synthesis. Precipitation manipulations on the field experiments were carried out using an automated rainfall manipulation system developed as part of this dissertation. Aboveground net primary production responses were monitored during five years. Increased precipitation coefficient of variation decreased primary production regardless of the effect of precipitation amount. Perennial-grass productivity significantly decreased while shrub productivity increased as a result of enhanced precipitation variance. Most interesting is that the effect of precipitation variability increased through time highlighting the existence of temporal lags in ecosystem response.

Further, I investigated the effect of precipitation variation on functional diversity on the same experiment and found a positive response of diversity to increased interannual precipitation variance. Functional evenness showed a similar response resulting from large changes in plant-functional type relative abundance including decreased grass and increased shrub cover while functional richness showed non-significant response. Increased functional diversity ameliorated the direct negative effects of precipitation variation on ecosystem ANPP but did not control ecosystem stability where indirect effects through the dominant plant-functional type determined ecosystem stability.

Analyses of 80 long-term data sets, where I aggregated annual productivity and precipitation data into five-year temporal windows, showed that precipitation variance had a significant effect on aboveground net primary production that is modulated by mean precipitation. Productivity increased with precipitation variation at sites where mean annual precipitation is less than 339 mm but decreased at sites where precipitation is higher than 339 mm. Mechanisms proposed to explain patterns include: differential ANPP response to precipitation among sites, contrasting legacy effects and soil water distribution.

Finally, increased precipitation variance may impact global grasslands affecting plant-functional types in different ways that may lead to state changes, increased erosion and decreased stability that can in turn limit the services provided by these valuable ecosystems.
ContributorsGherardi Arbizu, Laureano (Author) / Sala, Osvaldo E. (Thesis advisor) / Childers, Daniel (Committee member) / Grimm, Nancy (Committee member) / Hall, Sharon (Committee member) / Wu, Jingle (Committee member) / Arizona State University (Publisher)
Created2014
156935-Thumbnail Image.png
Description
The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within

The public has expressed a growing desire for more sustainable and green technologies to be implemented in society. Bio-cementation is a method of soil improvement that satisfies this demand for sustainable and green technology. Bio-cementation can be performed by using microbes or free enzymes which precipitate carbonate within the treated soil. These methods are referred to as microbial induced carbonate precipitation (MICP) and enzyme induced carbonate precipitation (EICP). The precipitation of carbonate is the formation of crystalline minerals that fill the void spaces within a body of soil.

This thesis investigates the application of EICP in a soil collected from the Arizona State University Polytechnic campus. The surficial soil in the region is known to be a clayey sand. Both EICP and MICP have their limitations in soils consisting of a significant percentage of fines. Fine-grained soils have a greater surface area which requires the precipitation of a greater amount of carbonate to increase the soil’s strength. EICP was chosen due to not requiring any living organisms during the application, having a faster reaction rate and size constraints.

To determine the effectiveness of EICP as a method of improving a soil with a significant amount of fines, multiple comparisons were made: 1) The soil’s strength was analyzed on its own, untreated; 2) The soil was treated with EICP to determine if bio-cementation can strengthen the soil; 3) The soil had sand added to reduce the fines content and was treated with EICP to determine how the fines percentage effects the strength of a soil when treated with EICP.

While the EICP treatment increased the strength of the soil by over 3-fold, the strength was still relatively low when compared to results of other case studies treating sandy soils. More research could be done with triaxial testing due to the samples of the Polytechnic soil’s strength coming from capillarity.
ContributorsRoss, Johnathan (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Hamdan, Nasser (Committee member) / Arizona State University (Publisher)
Created2018
134798-Thumbnail Image.png
Description
There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work addresses the process that should be taken to make predictions

There has been much work done predicting the effects of climate change on transportation systems, this research parallels that past work and focuses on the effect of changes in precipitation on roadway drainage systems. On a macro level, this work addresses the process that should be taken to make predictions about the vulnerability of this system due to changes in precipitation. This work also addresses the mechanisms of failure of these drainage systems and how they may be affected by changes in precipitation due to climate change. These changes may entail more frequent failure by certain mechanisms, or a shift in the mechanisms for particular infrastructure. A sample water basin in the urban environment of Phoenix, Arizona is given as a case study. This study looks at the mechanisms of failure of the infrastructure therein, as well as provides a process of analyzing the effects of increases in precipitation to the vulnerability of this infrastructure. It was found that drainage structures at roadways being currently designed will see increases from 20-30% in peak discharge, which will lead to increased frequency of failure.
ContributorsHolt, Nathan Thomas (Author) / Chester, Mikhail V (Thesis director) / Mascaro, Giuseppe (Committee member) / Underwood, Benjamin S. (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
152115-Thumbnail Image.png
Description
Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the

Biological soil crusts (BSCs), topsoil microbial assemblages typical of arid land ecosystems, provide essential ecosystem services such as soil fertilization and stabilization against erosion. Cyanobacteria and lichens, sometimes mosses, drive BSC as primary producers, but metabolic activity is restricted to periods of hydration associated with precipitation. Climate models for the SW United States predict changes in precipitation frequency as a major outcome of global warming, even if models differ on the sign and magnitude of the change. BSC organisms are clearly well adapted to withstand desiccation and prolonged drought, but it is unknown if and how an alteration of the precipitation frequency may impact community composition, diversity, and ecosystem functions. To test this, we set up a BSC microcosm experiment with variable precipitation frequency treatments using a local, cyanobacteria-dominated, early-succession BSC maintained under controlled conditions in a greenhouse. Precipitation pulse size was kept constant but 11 different drought intervals were imposed, ranging between 416 to 3 days, during a period of 416 days. At the end of the experiments, bacterial community composition was analyzed by pyrosequencing of the 16s rRNA genes in the community, and a battery of functional assays were used to evaluate carbon and nitrogen cycling potentials. While changes in community composition were neither marked nor consistent at the Phylum level, there was a significant trend of decreased diversity with increasing precipitation frequency, and we detected particular bacterial phylotypes that responded to the frequency of precipitation in a consistent manner (either positively or negatively). A significant trend of increased respiration with increasingly long drought period was detected, but BSC could recover quickly from this effect. Gross photosynthesis, nitrification and denitrification remained essentially impervious to treatment. These results are consistent with the notion that BSC community structure adjustments sufficed to provide significant functional resilience, and allow us to predict that future alterations in precipitation frequency are unlikely to result in severe impacts to BSC biology or ecological relevance.
ContributorsMyers, Natalie Kristine (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Hall, Sharon (Committee member) / Turner, Benjamin (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2013
174861-Thumbnail Image.jpg
Created1925-19-39 (uncertain)
174864-Thumbnail Image.jpg
Created1922
174868-Thumbnail Image.jpg
Created1934
174871-Thumbnail Image.jpg
Created1922
174875-Thumbnail Image.jpg
Created1921
174879-Thumbnail Image.jpg
Created1921