Matching Items (2)
134726-Thumbnail Image.png
Description
Resistive Random Access Memory (RRAM) is an emerging type of non-volatile memory technology that seeks to replace FLASH memory. The RRAM crossbar array is advantageous in its relatively small cell area and faster read latency in comparison to NAND and NOR FLASH memory; however, the crossbar array faces design challenges

Resistive Random Access Memory (RRAM) is an emerging type of non-volatile memory technology that seeks to replace FLASH memory. The RRAM crossbar array is advantageous in its relatively small cell area and faster read latency in comparison to NAND and NOR FLASH memory; however, the crossbar array faces design challenges of its own in sneak-path currents that prevent proper reading of memory stored in the RRAM cell. The Current Sensing Amplifier is one method of reading RRAM crossbar arrays. HSpice simulations are used to find the associated reading delays of the Current Sensing Amplifier with respect to various sizes of RRAM crossbar arrays, as well as the largest array size compatible for accurate reading. It is found that up to 1024x1024 arrays are achievable with a worst-case read delay of 815ps, and it is further likely 2048x2048 arrays are able to be read using the Current Sensing Amplifier. In comparing the Current Sensing Amplifier latency results with previously obtained latency results from the Voltage Sensing Amplifier, it is shown that the Voltage Sensing Amplifier reads arrays in sizes up to 256x256 faster while the Current Sensing Amplifier reads larger arrays faster.
ContributorsMoore, Jenna Barber (Author) / Yu, Shimeng (Thesis director) / Liu, Rui (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
158879-Thumbnail Image.png
Description
Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these

Lateral programmable metallization cells (PMC) utilize the properties of electrodeposits grown over a solid electrolyte channel. Such devices have an active anode and an inert cathode separated by a long electrodeposit channel in a coplanar arrangement. The ability to transport large amount of metallic mass across the channel makes these devices attractive for various More-Than-Moore applications. Existing literature lacks a comprehensive study of electrodeposit growth kinetics in lateral PMCs. Moreover, the morphology of electrodeposit growth in larger, planar devices is also not understood. Despite the variety of applications, lateral PMCs are not embraced by the semiconductor industry due to incompatible materials and high operating voltages needed for such devices. In this work, a numerical model based on the basic processes in PMCs – cation drift and redox reactions – is proposed, and the effect of various materials parameters on the electrodeposit growth kinetics is reported. The morphology of the electrodeposit growth and kinetics of the electrodeposition process are also studied in devices based on Ag-Ge30Se70 materials system. It was observed that the electrodeposition process mainly consists of two regimes of growth – cation drift limited regime and mixed regime. The electrodeposition starts in cation drift limited regime at low electric fields and transitions into mixed regime as the field increases. The onset of mixed regime can be controlled by applied voltage which also affects the morphology of electrodeposit growth. The numerical model was then used to successfully predict the device kinetics and onset of mixed regime. The problem of materials incompatibility with semiconductor manufacturing was solved by proposing a novel device structure. A bilayer structure using semiconductor foundry friendly materials was suggested as a candidate for solid electrolyte. The bilayer structure consists of a low resistivity oxide shunt layer on top of a high resistivity ion carrying oxide layer. Devices using Cu2O as the low resistivity shunt on top of Cu doped WO3 oxide were fabricated. The bilayer devices provided orders of magnitude improvement in device performance in the context of operating voltage and switching time. Electrical and materials characterization revealed the structure of bilayers and the mechanism of electrodeposition in these devices.
ContributorsChamele, Ninad (Author) / Kozicki, Michael (Thesis advisor) / Barnaby, Hugh (Committee member) / Newman, Nathan (Committee member) / Gonzalez-Velo, Yago (Committee member) / Arizona State University (Publisher)
Created2020