Matching Items (2)
Filtering by

Clear all filters

136502-Thumbnail Image.png
Description
There has long been a link tied between obesity and such pathological conditions as nonalcoholic fatty liver disease and type two diabetes. Studies have shown that feeding rats a diet high in fat results in hepatic steatosis and steatohepatitis. Using a novel short term diet of six weeks with male

There has long been a link tied between obesity and such pathological conditions as nonalcoholic fatty liver disease and type two diabetes. Studies have shown that feeding rats a diet high in fat results in hepatic steatosis and steatohepatitis. Using a novel short term diet of six weeks with male adolescent Sprague-Dawley rats, our laboratory sought to investigate the early effects of high fat intake on the liver. Prior findings in our laboratory found that a high fat diet (HFD) leads to nonalcoholic fatty liver disease as well as other symptoms of metabolic syndrome. This study hypothesized that rats fed a 60% HFD for 6 weeks, unlike a high sucrose or standard chow diet, would have an elevated expression of pro-inflammatory cytokines associated with steatohepatitis. TNF-α, TLR4 and XBP1 were chosen for their link to hepatic inflammation. The results of this study found that contrary to the hypothesis, the high fat diet did not induce significant changes in the expression of any inflammatory marker in comparison to a high sucrose or control chow diet.
ContributorsCalhoun, Matthew (Author) / Sweazea, Karen (Thesis director) / Deviche, Pierre (Reviewer) / Barrett, The Honors College (Contributor)
Created2015-05
137460-Thumbnail Image.png
Description
High fat diets (HFD) are known to cause hepatic non-alcoholic steatosis in rats in as few as four weeks. Accumulation of triglycerides in liver and skeletal muscle is associated with insulin resistance and obesity. However, studies of fat accumulation in cardiac muscle are not as prevalent. Therefore, the first hypothesis

High fat diets (HFD) are known to cause hepatic non-alcoholic steatosis in rats in as few as four weeks. Accumulation of triglycerides in liver and skeletal muscle is associated with insulin resistance and obesity. However, studies of fat accumulation in cardiac muscle are not as prevalent. Therefore, the first hypothesis of this study was that HFD would lead to hepatic steatosis as well as lipid accumulation in pectoralis and cardiac muscles, tissues responsible for the majority of postprandial glucose disposal. Prior studies also indicated that HFD leads to increased inflammation and oxidative stress within the vasculature resulting in impaired endothelium-dependent vasodilation, however biomarkers of immune system reactivity were not assessed. Therefore, the second aim of this study was to explore additional pathways of immune system reactivity and stress (natural antibodies; heat shock protein 60 (HSP60)) in rats fed either a control (chow) or high fat (HFD) diet. HSP60 has also recently been recognized as an early marker of vascular dysfunction in humans. The hypothesis was that immune system reactivity and early vascular dysfunction would be heightened in rats fed a HFD compared to chow-fed controls. Young male Sprague-Dawley rats (140-160g) were maintained on a chow diet (5% fat, 57.33% carbohydrate, 3.4kcal/g) or HFD (60% fat, 20% carbohydrate, 5.24 kcal/g) for 6 weeks. HFD rats developed hepatic steatosis with significantly elevated liver triglyceride concentrations compared to chow-fed controls (20.73±2.09 vs.9.75±0.52 mg triglycerides/g tissue, respectively; p=0.001). While lipid accumulation appeared to be evident in the pectoralis muscle from HFD rats, triglyceride concentrations were not significantly different from controls. Likewise, there was no evidence of lipid infiltration in cardiac muscles of HFD rats. Lipid accumulation in the liver of overweight HFD rats may contribute to the observed insulin resistance in these animals. Contrary to the second hypothesis, there were no significant differences in plasma HSP60 expression between HFD and chow rats (p>0.05). Likewise, hemagglutination and hemolysis responses were similar between HFD and chow-fed rats (p>0.05). These findings suggest that immune system responses may not be affected by 6 weeks of high fat intake and that HSP60 is not an early marker of vascular dysfunction in this rodent model.
ContributorsLiss, Tyler Jessee (Author) / Sweazea, Karen (Thesis director) / Shaibi, Gabriel (Committee member) / Johnston, Carol (Committee member) / Barrett, The Honors College (Contributor) / School of Nutrition and Health Promotion (Contributor) / School of Historical, Philosophical and Religious Studies (Contributor)
Created2013-05