Matching Items (2)
Filtering by

Clear all filters

150016-Thumbnail Image.png
Description
Designing studies that use latent growth modeling to investigate change over time calls for optimal approaches for conducting power analysis for a priori determination of required sample size. This investigation (1) studied the impacts of variations in specified parameters, design features, and model misspecification in simulation-based power analyses and

Designing studies that use latent growth modeling to investigate change over time calls for optimal approaches for conducting power analysis for a priori determination of required sample size. This investigation (1) studied the impacts of variations in specified parameters, design features, and model misspecification in simulation-based power analyses and (2) compared power estimates across three common power analysis techniques: the Monte Carlo method; the Satorra-Saris method; and the method developed by MacCallum, Browne, and Cai (MBC). Choice of sample size, effect size, and slope variance parameters markedly influenced power estimates; however, level-1 error variance and number of repeated measures (3 vs. 6) when study length was held constant had little impact on resulting power. Under some conditions, having a moderate versus small effect size or using a sample size of 800 versus 200 increased power by approximately .40, and a slope variance of 10 versus 20 increased power by up to .24. Decreasing error variance from 100 to 50, however, increased power by no more than .09 and increasing measurement occasions from 3 to 6 increased power by no more than .04. Misspecification in level-1 error structure had little influence on power, whereas misspecifying the form of the growth model as linear rather than quadratic dramatically reduced power for detecting differences in slopes. Additionally, power estimates based on the Monte Carlo and Satorra-Saris techniques never differed by more than .03, even with small sample sizes, whereas power estimates for the MBC technique appeared quite discrepant from the other two techniques. Results suggest the choice between using the Satorra-Saris or Monte Carlo technique in a priori power analyses for slope differences in latent growth models is a matter of preference, although features such as missing data can only be considered within the Monte Carlo approach. Further, researchers conducting power analyses for slope differences in latent growth models should pay greatest attention to estimating slope difference, slope variance, and sample size. Arguments are also made for examining model-implied covariance matrices based on estimated parameters and graphic depictions of slope variance to help ensure parameter estimates are reasonable in a priori power analysis.
ContributorsVan Vleet, Bethany Lucía (Author) / Thompson, Marilyn S. (Thesis advisor) / Green, Samuel B. (Committee member) / Enders, Craig K. (Committee member) / Arizona State University (Publisher)
Created2011
153850-Thumbnail Image.png
Description
Quadratic growth curves of 2nd degree polynomial are widely used in longitudinal studies. For a 2nd degree polynomial, the vertex represents the location of the curve in the XY plane. For a quadratic growth curve, we propose an approximate confidence region as well as the confidence interval for x and

Quadratic growth curves of 2nd degree polynomial are widely used in longitudinal studies. For a 2nd degree polynomial, the vertex represents the location of the curve in the XY plane. For a quadratic growth curve, we propose an approximate confidence region as well as the confidence interval for x and y-coordinates of the vertex using two methods, the gradient method and the delta method. Under some models, an indirect test on the location of the curve can be based on the intercept and slope parameters, but in other models, a direct test on the vertex is required. We present a quadratic-form statistic for a test of the null hypothesis that there is no shift in the location of the vertex in a linear mixed model. The statistic has an asymptotic chi-squared distribution. For 2nd degree polynomials of two independent samples, we present an approximate confidence region for the difference of vertices of two quadratic growth curves using the modified gradient method and delta method. Another chi-square test statistic is derived for a direct test on the vertex and is compared to an F test statistic for the indirect test. Power functions are derived for both the indirect F test and the direct chi-square test. We calculate the theoretical power and present a simulation study to investigate the power of the tests. We also present a simulation study to assess the influence of sample size, measurement occasions and nature of the random effects. The test statistics will be applied to the Tell Efficacy longitudinal study, in which sound identification scores and language protocol scores for children are modeled as quadratic growth curves for two independent groups, TELL and control curriculum. The interpretation of shift in the location of the vertices is also presented.
ContributorsYu, Wanchunzi (Author) / Reiser, Mark R. (Thesis advisor) / Barber, Jarrett (Committee member) / Kao, Ming-Hung (Committee member) / St Louis, Robert D (Committee member) / Wilson, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2015