Matching Items (2)
Filtering by

Clear all filters

Description
An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debris and algae. Case in point, according to the pool industry, a pump should operate one hour for every ten degrees of ambient temperature. A dynamic

An issue with the utilization of swimming pools is that pumps are operated an excessive number of hours to keep the pool free of debris and algae. Case in point, according to the pool industry, a pump should operate one hour for every ten degrees of ambient temperature. A dynamic model and a control strategy have been developed using Matlab/Simulink that uses environmental conditions together with chemicals that hinder or aid algae growth in order to determine algae population. This model suggests ways to function the pump on shorter time intervals to reduce energy consumption, while simultaneously maintaining algae populations at acceptable levels. Other factors included in the model are pool thermal dynamics and pool pump/filter performance characteristics, since they also have an effect algae growth. This thesis presents the first step for an alternative way of operating a swimming pool by minimizing operating costs while eliminating algae.
ContributorsBallard, Roderick (Author) / Macia, Narciso (Thesis advisor) / Narveson, Brentt (Committee member) / Mchenry, Albert (Committee member) / Dempster, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
134357-Thumbnail Image.png
Description
Year after year, babies are dying after being left behind in cars that reach dangerous levels of heat. This project, conducted by the Hot Babies Senior Design Team, aims to solve this growing issue with the development of a hot car baby monitor. This device is integrated with multiple sensors:

Year after year, babies are dying after being left behind in cars that reach dangerous levels of heat. This project, conducted by the Hot Babies Senior Design Team, aims to solve this growing issue with the development of a hot car baby monitor. This device is integrated with multiple sensors: temperature, sound, carbon dioxide, and motion in order to detect life inside of a hot car. By using different sensors, a combination of threshold activated signals can be used to provide high quality monitoring and reduce false alarms from outside noise. Once the algorithms predict the presence of a living being inside a dangerously hot vehicle, the baby car monitor will send out text messages warning designated parents and/or guardians of the issue. The baby car monitor is further optimized with a low battery indicator and a sleep mode feature. The schedule of the project is separated into the fall and spring semesters. For the fall semester, all of the sensors and the microcontroller were purchased and tested individually. For the spring semester, all of the sensors were integrated together on a PCB and tested under hot car environments. Additionally, features such as the text messaging interface and the sleep mode were added. The budget of the final working product is roughly ~ $200. The cost includes the different sensors, microcontroller, data plan, text messaging module, and PCB. When mass produced, the cost is expected to go down.
ContributorsQin, Eric C (Co-author) / Luc, Andrew (Co-author) / Cheung, Wai (Co-author) / Moore, Jenna (Co-author) / Vittal, Vijay (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2017-05