Matching Items (3)
Filtering by

Clear all filters

150566-Thumbnail Image.png
Description
Commodity contracts are often awarded on the basis of price. A price-based methodology for making such awards fails to consider the suppliers' ability to minimize the risk of non-performance in terms of cost, schedule, or customer satisfaction. Literature suggests that nearly all risk in the delivery of commodities is in

Commodity contracts are often awarded on the basis of price. A price-based methodology for making such awards fails to consider the suppliers' ability to minimize the risk of non-performance in terms of cost, schedule, or customer satisfaction. Literature suggests that nearly all risk in the delivery of commodities is in the interfacing of nodes within a supply chain. Therefore, commodity suppliers should be selected on the basis of their past performance, ability to identify and minimize risk, and capacity to preplan the delivery of services. Organizations that select commodity suppliers primarily on the basis of price may experience customer dissatisfaction, delayed services, low product quality, or some combination thereof. One area that is often considered a "commodity" is the delivery of furniture services. Arizona State University, on behalf of the Arizona Tri-University Furniture Consortium, approached the researcher and identified concerns with their current furnishing services contract. These concerns included misaligned customer expectations, minimal furniture supplier upfront involvement on large capital construction projects, and manufacturer design expertise was not being utilized during project preplanning. The Universities implemented a best value selection process and risk management structure. The system has resulted in a 9.3 / 10 customer satisfaction rating (24 percent increase over the previous system), for over 1,100 furniture projects totaling $19.3M.
ContributorsSmithwick, Jake (Author) / Sullivan, Kenneth T. (Thesis advisor) / Kashiwagi, Dean T. (Committee member) / Badger, William W. (Committee member) / Arizona State University (Publisher)
Created2012
136548-Thumbnail Image.png
Description
The value of data in the construction industry is driven by the actual worth or usefulness the data can provide. The revolutionary method of Best Value Performance Information Procurement System implemented into the industry by the Performance Based Studies Research Group at ASU optimizes the value of data. By simplifying

The value of data in the construction industry is driven by the actual worth or usefulness the data can provide. The revolutionary method of Best Value Performance Information Procurement System implemented into the industry by the Performance Based Studies Research Group at ASU optimizes the value of data. By simplifying the details and complexity of a construction project through dominant and logical thinking, the Best Value system delivers efficient, non-risk success. The Best Value model's implementation into industry projects is observed in the PBSRG Minnesota projects in order to improve data collection and metric analysis. The Minnesota projects specifically have an issue with delivering Best Value transparency, the notion that the details of project data should be used to support dominant ideas. By improving and simplifying the data collection tools of PBSRG, Best Value transparency can be achieved more easily and effective, in turn improved the Best Value system.
ContributorsMisiak, Erik Richard (Author) / Kashiwagi, Dean (Thesis director) / Kashiwagi, Jacob (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2015-05
135838-Thumbnail Image.png
Description
In this paper, the impact of running a Best Value system in a student-run/volunteer group is measured, documented, and analyzed. The group being used for this test is the Arizona State University Society of Automotive Engineers Formula Team. The Arizona State University Society of Automotive Engineers Formula Team has participated

In this paper, the impact of running a Best Value system in a student-run/volunteer group is measured, documented, and analyzed. The group being used for this test is the Arizona State University Society of Automotive Engineers Formula Team. The Arizona State University Society of Automotive Engineers Formula Team has participated in national Formula SAE competitions since at least 1992, however, in the last twenty years, the team has only been able to produce one car that was able to finish the competition on time. In a similar time period, Best Value has been successfully tested on over 1860 professional projects with a 95% satisfaction rating. Using the Best Value approach to increase transparency and accountability through simple metrics and documentation, the 2016 Arizona State University Society of Automotive Engineers Formula Team was able to complete their car in 278 days. In comparison, it took 319 days for the 2015 team and 286 for the average collegiate team. This is an improvement of 13% when compared to the 2015 team and 3% when compared to the average collegiate team. With these results it can be deduced that the Best Value approach is a viable method for improving efficiency of student-run and volunteer organizations. It is the recommendation of this report that the Arizona State University Society of Automotive Engineers Formula Team continue to utilize Best Value practices and run this system again each year moving forward. This consistent documentation should result in continuous improvement in the time required to complete the car as well as its quality.
ContributorsWojtas, Thomas Samuel (Author) / Trimble, Steven (Thesis director) / Kashiwagi, Dean (Committee member) / Kashiwagi, Jacob (Committee member) / WPC Graduate Programs (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05