Matching Items (224)
Filtering by

Clear all filters

173012-Thumbnail Image.png
Description

Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to

Between February 1969 and August 1970 Edward Kollar and Grace Baird, from the University of Chicago in Chicago, Illinois, published three papers that established the role of the mesenchyme in tooth induction. Drawing upon a history of using tissue interactions to understand differentiation, Kollar and Baird designed their experiments to understand how differentiated structures become specified. Their work overturned a widely accepted model that epithelium controls the identity of the structure, a phenomenon called structural specificity. Interactions between epithelium and mesenchyme control the development and differentiation of many parts during embryonic development, including structures like the gastrointestinal tract and hair. Thus, the realization that mesenchyme drives induction and differentiation during epithelio-mesenchymal interactions had far-reaching effects.

Created2013-03-15
172946-Thumbnail Image.png
Description

Albert William Liley advanced the science of fetal physiology and the techniques of life-saving in utero blood transfusions for fetuses with Rh incompatibility, also known as hemolytic disease. Due to his advances, fetuses too young to survive premature delivery, and likely to die in utero if their Rh incompabilities were

Albert William Liley advanced the science of fetal physiology and the techniques of life-saving in utero blood transfusions for fetuses with Rh incompatibility, also known as hemolytic disease. Due to his advances, fetuses too young to survive premature delivery, and likely to die in utero if their Rh incompabilities were left untreated, were successfully transfused and carried to term. Liley was as passionate as a clinician and researcher as he was about his views on the rights of the unborn.

Created2011-05-11
172896-Thumbnail Image.png
Description

The Silent Scream is an anti-abortion film released in 1984 by American Portrait Films, then based in Brunswick, Ohio. The film was created and narrated by Bernard Nathanson, an obstetrician and gynecologist from New York, and it was produced by Crusade for Life, an evangelical anti-abortion organization. In the

The Silent Scream is an anti-abortion film released in 1984 by American Portrait Films, then based in Brunswick, Ohio. The film was created and narrated by Bernard Nathanson, an obstetrician and gynecologist from New York, and it was produced by Crusade for Life, an evangelical anti-abortion organization. In the video, Nathanson narrates ultrasound footage of an abortion of a twelve-week-old fetus, claiming that the fetus opened its mouth in what Nathanson calls a silent scream during the procedure. As a result of Nathanson's anti-abortion stance in the film, The Silent Scream contributed to the abortion debate in the 1980s.

Created2013-05-02
172905-Thumbnail Image.png
Description

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952

Sir John Bertrand Gurdon further developed nuclear transplantation, the technique used to clone organisms and to create stem cells, while working in Britain in the second half of the twentieth century. Gurdon's research built on the work of Thomas King and Robert Briggs in the United States, who in 1952 published findings that indicated that scientists could take a nucleus from an early embryonic cell and successfully transfer it into an unfertilized and enucleated egg cell. Briggs and King also concluded that a nucleus taken from an adult cell and similarly inserted into an unfertilized enucleated egg cell could not produce normal development. In 1962, however, Gurdon published results that indicated otherwise. While Briggs and King worked with Rana pipiens frogs, Gurdon used the faster-growing species Xenopus laevis to show that nuclei from specialized cells still held the potential to be any cell despite its specialization. In 2012, the Nobel Prize Committee awarded Gurdon and Shinya Yamanaka its prize in physiology and medicine for for their work on cloning and pluripotent stem cells.

Created2012-10-11
172906-Thumbnail Image.png
Description

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and

Mesoderm is one of the three germ layers, groups of cells that interact early during the embryonic life of animals and from which organs and tissues form. As organs form, a process called organogenesis, mesoderm interacts with endoderm and ectoderm to give rise to the digestive tract, the heart and skeletal muscles, red blood cells, and the tubules of the kidneys, as well as a type of connective tissue called mesenchyme. All animals that have only one plane of symmetry through the body, called bilateral symmetry, form three germ layers. Animals that have only two germ layers develop open digestive cavities. In contrast, the evolutionary development of the mesoderm allowed in animals the formation of internal organs such as stomachs and intestines (viscera).

Created2013-11-26
172913-Thumbnail Image.png
Description

The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans

The Spemann-Mangold organizer, also known as the Spemann organizer, is a cluster of cells in the developing embryo of an amphibian that induces development of the central nervous system. Hilde Mangold was a PhD candidate who conducted the organizer experiment in 1921 under the direction of her graduate advisor, Hans Spemann, at the University of Freiburg in Freiburg, German. The discovery of the Spemann-Mangold organizer introduced the concept of induction in embryonic development. Now integral to the field of developmental biology, induction is the process by which the identity of certain cells influences the developmental fate of surrounding cells. Spemann received the Nobel Prize in Medicine in 1935 for his work in describing the process of induction in amphibians. The Spemann-Mangold organizer drew the attention of embryologists, and it spurred numerous experiments on the nature of induction in many types of developing embryos.

Created2012-01-12
172917-Thumbnail Image.png
Description

Francesco Redi, son of Florentine physician Cecilia de' Ghinci and Gregorio Redi, was born in Arezzo, Italy, on 18 February 1626. He studied philosophy and medicine at the University of Pisa, graduating on 1 May 1647. A year later, Redi moved to Florence and registered at the Collegio Medico. There

Francesco Redi, son of Florentine physician Cecilia de' Ghinci and Gregorio Redi, was born in Arezzo, Italy, on 18 February 1626. He studied philosophy and medicine at the University of Pisa, graduating on 1 May 1647. A year later, Redi moved to Florence and registered at the Collegio Medico. There he served at the Medici Court as both the head physician and superintendent of the ducal pharmacy and foundry. Redi was also a member of the Accademia del Cimento, which flourished from 1657-1667. It was during this decade that Redi produced his most important works.

Created2007-11-01
172918-Thumbnail Image.png
Description

As one of the researchers involved in the development of the oral contraceptive pill, Min Chueh Chang helped to revolutionize the birth control movement. Although best known for his involvement with "the pill," Chang also made a number of discoveries throughout his scientific career involving a range of topics within

As one of the researchers involved in the development of the oral contraceptive pill, Min Chueh Chang helped to revolutionize the birth control movement. Although best known for his involvement with "the pill," Chang also made a number of discoveries throughout his scientific career involving a range of topics within the field of reproductive biology. He published nearly 350 articles in scientific journals. His dedication to his work left him with little time for family responsibilities, although shortly after his arrival in the United States in 1951, Chang married Isabelle Chin, an American-born Chinese woman with whom he would later have three children.

Created2007-11-08
172920-Thumbnail Image.png
Description

During the twentieth and twenty-first centuries, Robert Paul Lanza studied embryonic stem cells, tissues,
and endangered species as chief scientific officer of Advanced Cell
Technology, Incorporated in Worcester, Massachusetts. Lanza's team cloned
the endangered species of gaur Bos gaurus.
Although the gaur did not survive long,

During the twentieth and twenty-first centuries, Robert Paul Lanza studied embryonic stem cells, tissues,
and endangered species as chief scientific officer of Advanced Cell
Technology, Incorporated in Worcester, Massachusetts. Lanza's team cloned
the endangered species of gaur Bos gaurus.
Although the gaur did not survive long, Lanza successfully cloned
another cow-like creature, called the banteng
(Bos
javanicus). Lanza also worked on cloning human embryos
to harvest stem cells, which could be used to treat dieases. While
previous techniques required the embryo's destruction, Lanza
developed a harvesting technique that does not destroy the embryo,
forestalling many ethical objections to human embryonic
research.

Created2015-02-11
172923-Thumbnail Image.png
Description

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or

Telomerase is an enzyme that regulates the lengths of telomeres in the cells of many organisms, and in humans it begins to function int the early stages of embryonic development. Telomeres are repetitive sequences of DNA on the ends of chromosomes that protect chromosomes from sticking to each other or tangling. In 1989, Gregg Morin found that telomerase was present in human cells. In 1996, Woodring Wright and his team examined human embryonic cells and found that telomerase was active in them. Scientists manipulate telomerase in cells to give cells the capacity to replicate infinitely. Telomerase is also necessary for stem cells to replicate themselves and to develop into more specialized cells in embryos and fetuses.

Created2015-03-23