Matching Items (5)
Filtering by

Clear all filters

137398-Thumbnail Image.png
Description
My project analyzes the air traffic control tower (ATCT) system of the Federal Aviation Administration (FAA) to determine if a rebalancing of ATCT ownership and operation should occur. The government currently faces a problem of a tight financial budget and sequestration, which often times means mandatory budget cuts. This project

My project analyzes the air traffic control tower (ATCT) system of the Federal Aviation Administration (FAA) to determine if a rebalancing of ATCT ownership and operation should occur. The government currently faces a problem of a tight financial budget and sequestration, which often times means mandatory budget cuts. This project provides one possible solution for the FAA to save money in their budget without adversely affecting safety. The FAA could establish appropriate criteria to compare all ATCTs. The FAA could then apply these criteria in a policy that would contract the operation of certain low-level ATCTs and conversely handle the operations at high-activity ATCTs. Additionally, the FAA could include a policy to transfer the ownership of certain low-activity towers, but transfer the ownership of high-activity towers to the FAA. The research was completed by studying various documents from the FAA, Department of Transportation (DOT), and industry groups. Most of the data analysis was conducted by creating tables, queries, and graphs from FAA data. The FAA data was found on their Air Traffic Activity Data System (ATADS). From my data analysis, I was able to identify sixty-nine ATCTs that are currently operated by the FAA that could become federal contract towers (FCT) and forty-six FCTs that could be operated by the FAA. Each FCT saves the FAA approximately $1.488 million, so the FAA could save $34.2 million per year by implementing my solutions. I have also established sample criteria for determining which ATCTs could be maintained by the FAA.
ContributorsJuri, William Joseph (Author) / Denny, Casey (Thesis director) / Niemczyk, Mary (Committee member) / Barrett, The Honors College (Contributor) / Department of Technological Entrepreneurship and Innovation Management (Contributor)
Created2013-12
149622-Thumbnail Image.png
Description
Building computational models of human problem solving has been a longstanding goal in Artificial Intelligence research. The theories of cognitive architectures addressed this issue by embedding models of problem solving within them. This thesis presents an extended account of human problem solving and describes its implementation within one such theory

Building computational models of human problem solving has been a longstanding goal in Artificial Intelligence research. The theories of cognitive architectures addressed this issue by embedding models of problem solving within them. This thesis presents an extended account of human problem solving and describes its implementation within one such theory of cognitive architecture--ICARUS. The document begins by reviewing the standard theory of problem solving, along with how previous versions of ICARUS have incorporated and expanded on it. Next it discusses some limitations of the existing mechanism and proposes four extensions that eliminate these limitations, elaborate the framework along interesting dimensions, and bring it into closer alignment with human problem-solving abilities. After this, it presents evaluations on four domains that establish the benefits of these extensions. The results demonstrate the system's ability to solve problems in various domains and its generality. In closing, it outlines related work and notes promising directions for additional research.
ContributorsTrivedi, Nishant (Author) / Langley, Patrick W (Thesis advisor) / VanLehn, Kurt (Committee member) / Kambhampati, Subbarao (Committee member) / Arizona State University (Publisher)
Created2011
134979-Thumbnail Image.png
Description
Airports are a vital part of the United States' transportation infrastructure. A variety of factors impact the amount of aircraft that an airport can handle per hour. One of these factors is the runway capacity. Strict rules regarding the amount of separation required between two aircraft landing at the same

Airports are a vital part of the United States' transportation infrastructure. A variety of factors impact the amount of aircraft that an airport can handle per hour. One of these factors is the runway capacity. Strict rules regarding the amount of separation required between two aircraft landing at the same airport and lack of available land limit the ways that airport managers and planners can tackle this problem. Research was conducted at the Arizona State University's Simulator Building using the Adacel Tower Simulation System. Modifications to the airport were then made to simulate the high speed exit. Testing utilized aircraft in the large category, including Airbus A320s, which are regularly seen at the airport. Airport capacity dramatically increased as a result. The previous AAR was 33. With the research conducted, aircraft can exit the runway between 27 and 30 seconds with final approach speeds ranging from 130 knots to 150 knots. To allow for a margin for safety, a 35 second runway occupancy time is used. With that rate, assuming that other separation standards are changed to accommodate that traffic level, the runway AAR increases to approximately 100. To reach this potential, changes to the FAAs separation requirements for aircraft on the same final approach course must be made, to allow aircraft to be closer together.
ContributorsRojas, Jorge Alejandro (Author) / Niemczyk, Mary (Thesis director) / Mandeville, Roger (Committee member) / Aviation Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
154809-Thumbnail Image.png
Description
This study examined the impact of Situation Presence Assessment Method (SPAM) administration on air traffic control (ATC) students’ task workload and performance in high-fidelity ATC simulations. ATC students performed high-fidelity en-route simulations in two conditions: baseline conditions (without SPAM questions) and SPAM conditions. The data collected show that while workload

This study examined the impact of Situation Presence Assessment Method (SPAM) administration on air traffic control (ATC) students’ task workload and performance in high-fidelity ATC simulations. ATC students performed high-fidelity en-route simulations in two conditions: baseline conditions (without SPAM questions) and SPAM conditions. The data collected show that while workload in the two conditions were not significantly different, there was a trend of higher mental workload in SPAM conditions than in baseline conditions. Performance immediately following SPAM questions was revealed to be poorer than that preceding the SPAM questions and that over the equivalent time periods in the baseline conditions. The results suggest that a "Ready" signal before a SPAM question may not be enough to eliminate the impact of SPAM administration on ATC students’ workload and performance in high-fidelity en-route simulations.
ContributorsZhang, Chao, M.S (Author) / Niemczyk, Mary (Thesis advisor) / Pearson, Michael (Committee member) / Nullmeyer, Robert (Committee member) / Arizona State University (Publisher)
Created2016
155515-Thumbnail Image.png
Description
Currently, educational games are designed with the educational content as the primary factor driving the design of the game. While this may seem to be the optimal approach, this design paradigm causes multiple issues. For one, the games themselves are often not engaging as game design principles were put aside

Currently, educational games are designed with the educational content as the primary factor driving the design of the game. While this may seem to be the optimal approach, this design paradigm causes multiple issues. For one, the games themselves are often not engaging as game design principles were put aside in favor of increasing the educational value of the game. The other issue is that the code base of the game is mostly or completely unusable for any other games as the game mechanics are too strongly connected to the educational content being taught. This means that the mechanics are impossible to reuse in future projects without major revisions, and starting over is often more time and cost efficient.

This thesis presents the Content Agnostic Game Engineering (CAGE) model for designing educational games. CAGE is a way to separate the educational content from the game mechanics without compromising the educational value of the game. This is done by designing mechanics that can have multiple educational contents layered on top of them which can be switched out at any time. CAGE allows games to be designed with a game design first approach which allows them to maintain higher engagement levels. In addition, since the mechanics are not tied to the educational content several different educational topics can reuse the same set of mechanics without requiring major revisions to the existing code.

Results show that CAGE greatly reduces the amount of code needed to make additional versions of educational games, and speeds up the development process. The CAGE model is also shown to not induce high levels of cognitive load, allowing for more in depth topic work than was attempted in this thesis. However, engagement was low and switching the active content does interrupt the game flow considerably. Altering the difficulty of the game in real time in response to the affective state of the player was not shown to increase engagement. Potential causes of the issues with CAGE games and potential fixes are discussed.
ContributorsBaron, Tyler John (Author) / Amresh, Ashish (Thesis advisor) / Nelson, Brian C (Committee member) / Niemczyk, Mary (Committee member) / Arizona State University (Publisher)
Created2017