Matching Items (2)
Description
Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while

Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while other are nested between the myofibrils (i.e., intermyofibrillar (IMF) mitochondria). Functional and proteome differences specific to SS versus IMF mitochondria in obese individuals may contribute to reduced capacity for muscle ATP production seen in obesity. The overall goals of this work were to (1) isolate functional muscle SS and IMF mitochondria from lean and obese individuals, (2) assess enzyme activities associated with the electron transport chain and ATP production, (3) determine if elevated plasma amino acids enhance SS and IMF mitochondrial respiration and ATP production rates in SM of obese humans, and (4) determine differences in mitochondrial proteome regulating energy metabolism and key biological processes associated with SS and IMF mitochondria between lean and obese humans.

Polarography was used to determine functional differences in isolated SS and IMF mitochondria between lean (37 ± 3 yrs; n = 10) and obese (35 ± 3 yrs; n = 11) subjects during either saline (control) or amino acid (AA) infusions. AA infusion increased ADP-stimulated respiration (i.e., coupled respiration), non-ADP stimulated respiration (i.e., uncoupled respiration), and ATP production rates in SS, but not IMF mitochondria in lean (n = 10; P < 0.05). Neither infusion increased any of the above parameters in muscle SS or IMF mitochondria of the obese subjects.

Using label free quantitative mass spectrometry, we determined differences in proteomes of SM SS and IMF mitochondria between lean (33 ± 3 yrs; n = 16) and obese (32 ± 3 yrs; n = 17) subjects. Differentially-expressed mitochondrial proteins in SS versus IMF mitochondria of obese subjects were associated with biological processes that regulate: electron transport chain (P<0.0001), citric acid cycle (P<0.0001), oxidative phosphorylation (P<0.001), branched-chain amino acid degradation, (P<0.0001), and fatty acid degradation (P<0.001). Overall, these findings show that obesity is associated with redistribution of key biological processes within the mitochondrial reticulum responsible for regulating energy metabolism in human skeletal muscle.
ContributorsKras, Katon Anthony (Author) / Katsanos, Christos (Thesis advisor) / Chandler, Douglas (Committee member) / Dinu, Valentin (Committee member) / Mor, Tsafrir S. (Committee member) / Arizona State University (Publisher)
Created2017
Description

Our current understanding of the mitochondrial genome was revolutionized in 2015 with the discovery of short open reading frames (sORFs) that produced protein products called mitochondrial-derived peptides (MDPs). Interestingly, unlike other proteins produced by the organelle, these MDPs are not directly involved in the electron transport chain but rather serve

Our current understanding of the mitochondrial genome was revolutionized in 2015 with the discovery of short open reading frames (sORFs) that produced protein products called mitochondrial-derived peptides (MDPs). Interestingly, unlike other proteins produced by the organelle, these MDPs are not directly involved in the electron transport chain but rather serve the role of metabolic regulators. In particular, one of these peptides called MOTS-c has been shown to regulate glucose and fat metabolism in an AMPK-dependent manner. With its capacity to enter the mitochondria and impact gene expression, MOTS-c has also displayed the ability to increase aerobic exercise performance by triggering elevated synthesis of the HO-1 antioxidant. Overall these findings position MOTS-c as a promising treatment for metabolic diseases as well as a potential dietary supplement to boost ATP availability.

ContributorsRizvi, Hasan (Author) / Hyatt, JP (Thesis director) / Kingsbury, Jeffrey (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Molecular Sciences (Contributor)
Created2023-05