Matching Items (2)
Filtering by

Clear all filters

136661-Thumbnail Image.png
Description
A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe

A series of mitochondria targeting probes was synthesized for the purpose of exploring the feasibility of a mitochondria targeting fluorescent sensor. Of the probes, the probe with a two carbon spacer showed the best co-localization from staining with the established MitoTracker Red® FM, indicating a potential development of the probe into mitochondria targeting sensor. However, cytotoxicity was observed for the probe with a six carbon spacer. Three additional mitochondria targeting fluorescent probes of longer spacer groups were synthesized, but the cytotoxicity was not observed to be as high as that of the probe with a two carbon spacer. The cytotoxicity was characterized to be that of caspase dependent cell death. To screen for a possible effect on apoptosis due to the mitochondrial probe, three fluorescent fusion proteins binding the anti-apoptotic proteins were designed and expressed. Each purified fusion protein was then incubated with the cytotoxic mitochondrial probe, and the mixture was isolated by running an affinity column. The fluorescence analysis of eluted fractions showed preliminary data of possible interaction between the protein and the mitochondrial probe.
ContributorsLee, Fred (Author) / Meldrum, Deirdre R. (Thesis director) / Tian, Yanqing (Committee member) / Zhang, Liqiang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-12
133709-Thumbnail Image.png
Description
A prominent aspect of Alzheimer’s disease (AD) is the presence of neuroinflammation is mediated by the activation of microglial cells, which are the immune cells in the central nervous system (CNS) that express an array of cytokines that may promote an inflammatory response. The main cytokines produced are: tumor

A prominent aspect of Alzheimer’s disease (AD) is the presence of neuroinflammation is mediated by the activation of microglial cells, which are the immune cells in the central nervous system (CNS) that express an array of cytokines that may promote an inflammatory response. The main cytokines produced are: tumor necrosis factor-alpha (TNF-), interleukin-1β (IL-1β), and interleukin-6 (IL-6). The presence of these cytokines in the CNS may lead to neuronal death, to the production of toxic chemicals (such as nitric oxide), and to the generation of amyloid beta (a major pathological feature of AD). Previous studies have shown that modulation of the inflammatory response in the nervous system can potentially prevent and/or delay the onset of neurodegenerative diseases such as AD. Therefore, it is important to identify the process that induces CNS inflammation. For example, mitochondrial lysates have been found to produce an inflammatory response due to their ability to stimulate TNF-, Aβ, and APP mRNA [10]. Interestingly, extracellular mitochondria have been detected in the brain due to neurons degrading old mitochondria extracellularly. Therefore, we set out to study the effect of whole mitochondria isolated by differential centrifugation from human neuroblastoma cells (BE(2)-M17 cells) on the neuroinflammatory response in a human microglia model (THP-1 cells). Despite our best efforts, in the end it was unclear whether the mitochondrial fraction or other cellular components induced the inflammatory response we observed. Thus, further work with an improved mitochondrial isolation method should be carried out to address this issue.
ContributorsStokes, Laura Jean (Author) / DeCourt, Boris (Thesis director) / Sweazea, Karen (Committee member) / Gonzales, Rayna (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05