Matching Items (16)
Filtering by

Clear all filters

152264-Thumbnail Image.png
Description
In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many

In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many community-based chamber music ensembles have been formed throughout the United States. These groups not only focus on performing classical music, but serve the needs of their communities as well. The problem, however, is that many musicians have not learned the business skills necessary to create these career opportunities. In this document I discuss the steps ensembles must take to develop sustainable careers. I first analyze how groups build a strong foundation through getting to know their communities and creating core values. I then discuss branding and marketing so ensembles can develop a public image and learn how to publicize themselves. This is followed by an investigation of how ensembles make and organize their money. I then examine the ways groups ensure long-lasting relationships with their communities and within the ensemble. I end by presenting three case studies of professional ensembles to show how groups create and maintain successful careers. Ensembles must develop entrepreneurship skills in addition to cultivating their artistry. These business concepts are crucial to the longevity of chamber groups. Through interviews of successful ensemble members and my own personal experiences in the Tetra String Quartet, I provide a guide for musicians to use when creating a community-based ensemble.
ContributorsDalbey, Jenna (Author) / Landschoot, Thomas (Thesis advisor) / McLin, Katherine (Committee member) / Ryan, Russell (Committee member) / Solis, Theodore (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152727-Thumbnail Image.png
Description
American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute

American Primitive is a composition written for wind ensemble with an instrumentation of flute, oboe, clarinet, bass clarinet, alto, tenor, and baritone saxophones, trumpet, horn, trombone, euphonium, tuba, piano, and percussion. The piece is approximately twelve minutes in duration and was written September - December 2013. American Primitive is absolute music (i.e. it does not follow a specific narrative) comprising blocks of distinct, contrasting gestures which bookend a central region of delicate textural layering and minimal gestural contrast. Though three gestures (a descending interval followed by a smaller ascending interval, a dynamic swell, and a chordal "chop") were consciously employed throughout, it is the first gesture of the three that creates a sense of unification and overall coherence to the work. Additionally, the work challenges listeners' expectations of traditional wind ensemble music by featuring the trumpet as a quasi-soloist whose material is predominately inspired by transcriptions of jazz solos. This jazz-inspired material is at times mimicked and further developed by the ensemble, also often in a soloistic manner while the trumpet maintains its role throughout. This interplay of dialogue between the "soloists" and the "ensemble" further skews listeners' conceptions of traditional wind ensemble music by featuring almost every instrument in the ensemble. Though the term "American Primitive" is usually associated with the "naïve art" movement, it bears no association to the music presented in this work. Instead, the term refers to the author's own compositional attitudes, education, and aesthetic interests.
ContributorsJandreau, Joshua (Composer) / Rockmaker, Jody D (Thesis advisor) / Rogers, Rodney I (Committee member) / Demars, James R (Committee member) / Arizona State University (Publisher)
Created2014
153120-Thumbnail Image.png
Description
This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses

This project is a practical annotated bibliography of original works for oboe trio with the specific instrumentation of two oboes and English horn. Presenting descriptions of 116 readily available oboe trios, this project is intended to promote awareness, accessibility, and performance of compositions within this genre.

The annotated bibliography focuses exclusively on original, published works for two oboes and English horn. Unpublished works, arrangements, works that are out of print and not available through interlibrary loan, or works that feature slightly altered instrumentation are not included.

Entries in this annotated bibliography are listed alphabetically by the last name of the composer. Each entry includes the dates of the composer and a brief biography, followed by the title of the work, composition date, commission, and dedication of the piece. Also included are the names of publishers, the length of the entire piece in minutes and seconds, and an incipit of the first one to eight measures for each movement of the work.

In addition to providing a comprehensive and detailed bibliography of oboe trios, this document traces the history of the oboe trio and includes biographical sketches of each composer cited, allowing readers to place the genre of oboe trios and each individual composition into its historical context. Four appendices at the end include a list of trios arranged alphabetically by composer's last name, chronologically by the date of composition, and by country of origin and a list of publications of Ludwig van Beethoven's oboe trios from the 1940s and earlier.
ContributorsSassaman, Melissa Ann (Author) / Schuring, Martin (Thesis advisor) / Buck, Elizabeth (Committee member) / Holbrook, Amy (Committee member) / Hill, Gary (Committee member) / Arizona State University (Publisher)
Created2014
153176-Thumbnail Image.png
Description
Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron

Mitochondria are crucial intracellular organelles which play a pivotal role in providing energy to living organisms in the form of adenosine triphosphate (ATP). The mitochondrial electron transport chain (ETC) coupled with oxidative phosphorylation (OX-PHOS) transforms the chemical energy of amino acids, fatty acids and sugars to ATP. The mitochondrial electron transport system consumes nearly 90% of the oxygen used by the cell. Reactive oxygen species (ROS) in the form of superoxide anions (O2*-) are generated as byproduct of cellular metabolism due to leakage of electrons from complex I and complex III to oxygen. Under normal conditions, the effects of ROS are offset by a variety of antioxidants (enzymatic and non-enzymatic).

Mitochondrial dysfunction has been proposed in the etiology of various pathologies, including cardiovascular and neurodegenerative diseases, such as Alzheimer's disease and Parkinson's disease, ischemia-reperfusion (IR) injury, diabetes and aging. To treat these disorders, it is imperative to target mitochondria, especially the electron transport chain. One of the methodologies currently used for the treatment of mitochondrial and neurodegenerative diseases where endogenous antioxidant defenses are inadequate for protecting against ROS involves the administration of exogenous antioxidants.

As part of our pursuit of effective neuroprotective drugs, a series of pyridinol and pyrimidinol analogues have been rationally designed and synthesized. All the analogues were evaluated for their ability to quench lipid peroxidation and reactive oxygen species (ROS), and preserve mitochondrial membrane potential (Δm) and support ATP synthesis. These studies are summarized in Chapter 2.

Drug discovery and lead identification can be reinforced by assessing the metabolic fate of orally administered drugs using simple microsomal incubation experiments. Accordingly, in vitro microsomal studies were designed and carried out using bovine liver microsomes to screen available pyridinol and pyrimidinol analogues for their metabolic lability. The data obtained was utilized for an initial assessment of potential bioavailability of the compounds screened and is summarized fully in Chapter 3.
ContributorsAlam, Mohammad Parvez (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian R (Committee member) / Moore, Ana (Committee member) / Arizona State University (Publisher)
Created2014
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
Description
Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while

Skeletal muscle (SM) mitochondria generate the majority of adenosine triphosphate (ATP) in SM, and help regulate whole-body energy expenditure. Obesity is associated with alterations in SM mitochondria, which are unique with respect to their arrangement within cells; some mitochondria are located directly beneath the sarcolemma (i.e., subsarcolemmal (SS) mitochondria), while other are nested between the myofibrils (i.e., intermyofibrillar (IMF) mitochondria). Functional and proteome differences specific to SS versus IMF mitochondria in obese individuals may contribute to reduced capacity for muscle ATP production seen in obesity. The overall goals of this work were to (1) isolate functional muscle SS and IMF mitochondria from lean and obese individuals, (2) assess enzyme activities associated with the electron transport chain and ATP production, (3) determine if elevated plasma amino acids enhance SS and IMF mitochondrial respiration and ATP production rates in SM of obese humans, and (4) determine differences in mitochondrial proteome regulating energy metabolism and key biological processes associated with SS and IMF mitochondria between lean and obese humans.

Polarography was used to determine functional differences in isolated SS and IMF mitochondria between lean (37 ± 3 yrs; n = 10) and obese (35 ± 3 yrs; n = 11) subjects during either saline (control) or amino acid (AA) infusions. AA infusion increased ADP-stimulated respiration (i.e., coupled respiration), non-ADP stimulated respiration (i.e., uncoupled respiration), and ATP production rates in SS, but not IMF mitochondria in lean (n = 10; P < 0.05). Neither infusion increased any of the above parameters in muscle SS or IMF mitochondria of the obese subjects.

Using label free quantitative mass spectrometry, we determined differences in proteomes of SM SS and IMF mitochondria between lean (33 ± 3 yrs; n = 16) and obese (32 ± 3 yrs; n = 17) subjects. Differentially-expressed mitochondrial proteins in SS versus IMF mitochondria of obese subjects were associated with biological processes that regulate: electron transport chain (P<0.0001), citric acid cycle (P<0.0001), oxidative phosphorylation (P<0.001), branched-chain amino acid degradation, (P<0.0001), and fatty acid degradation (P<0.001). Overall, these findings show that obesity is associated with redistribution of key biological processes within the mitochondrial reticulum responsible for regulating energy metabolism in human skeletal muscle.
ContributorsKras, Katon Anthony (Author) / Katsanos, Christos (Thesis advisor) / Chandler, Douglas (Committee member) / Dinu, Valentin (Committee member) / Mor, Tsafrir S. (Committee member) / Arizona State University (Publisher)
Created2017
153859-Thumbnail Image.png
Description
Mitochondria produce the majority portion of ATP required in eukaryotic cells. ATP is generated through a process known as oxidative phosphorylation, through an pathway consisting five multi subunit proteins (complex I-IV and ATP synthase), embedded inside the mitochondrial membrane. Mitochondrial electron transport chain dysfunction increases reactive oxygen species in the

Mitochondria produce the majority portion of ATP required in eukaryotic cells. ATP is generated through a process known as oxidative phosphorylation, through an pathway consisting five multi subunit proteins (complex I-IV and ATP synthase), embedded inside the mitochondrial membrane. Mitochondrial electron transport chain dysfunction increases reactive oxygen species in the cell and causes several serious disorders. Described herein are the synthesis of antioxidant molecules to reduce the effects in an already dysfunctional system. Also described is the study of the mitochondrial electron transport chain to understand the mechanism of action of a library of antioxidants. Illustrated in chapter 1 is the general history of research on mitochondrial dysfunction and reported ways to ameliorate them. Chapter 2 describes the design and synthesis of a series of compounds closely resembling the redox-active quinone core of the natural product geldanamycin. Geldanamycin has been reported to confer cytoprotection to FRDA lymphocytes in a dose dependent manner under conditions of induced oxidative stress. A library of rationally designed derivatives has been synthesized as a part of our pursuit of a better neuroprotective drug. Chapter 3 describes the design and synthesis of a library of pyrimidinol analogues. Compounds of this type have demonstrated the ability to quench reactive oxygen species and sustain mitochondrial membrane potential. Described herein are our efforts to increase their metabolic stability and total ATP production. It is crucial to understand the nature of interaction between a potential drug molecule and the mitochondrial electron transport chain to enable the design and synthesis a better therapeutic candidates. Chapter 4 describes a part of the enzymatic

binding studies between a molecular library synthesized in our laboratory and the mitochondrial electron transport chain using sub mitochondrial particles (SMP).
ContributorsDey, Sriloy (Author) / Hecht, Sidney M. (Thesis advisor) / Angell, Charles A (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2015
155100-Thumbnail Image.png
Description
The repertoire for guitar and piano duo is small in comparison with other chamber music instrumentation; therefore, it is important to broaden this repertoire. In addition to creating original compositions, arrangements of existing works contribute to this expansion.

This project focuses on an arrangement of Bachianas Brasileiras No. 1 by

The repertoire for guitar and piano duo is small in comparison with other chamber music instrumentation; therefore, it is important to broaden this repertoire. In addition to creating original compositions, arrangements of existing works contribute to this expansion.

This project focuses on an arrangement of Bachianas Brasileiras No. 1 by Brazilian composer Heitor Villa-Lobos (1887-1959), a work originally conceived for cello ensemble with a minimum of eight cellos. In order to contextualize the proposed arrangement, this study contains a brief historical listing of the repertoire for guitar and piano duo and of the guitar works by Villa-Lobos. Also, it includes a description of the Bachianas Brasileiras series and a discussion of the arranging methodology that shows how the original musical ideas of the composer were adapted using techniques that are idiomatic to the guitar and piano. The full arrangement is included in Appendix A.
ContributorsFigueiredo Bartoloni, Fabio (Author) / Koonce, Frank (Thesis advisor) / Suzuki, Kotoka (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2016
155344-Thumbnail Image.png
Description
Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is

Phantom Sun is a ten-minute piece in three sections, and is composed for flute, clarinet in b-flat, violin, cello, and percussion. The three-part structure for this work is a representation of the atmospheric phenomenon after which the composition is named. A phantom sun, also called a parhelion or sundog, is a weather-related phenomenon caused by the horizontal refraction of sunlight in the upper atmosphere. This refraction creates the illusion of three suns above the horizon, and is often accompanied by a bright halo called the circumzenithal arc. The halo is caused by light bending at 22° as it passes through hexagonal ice crystals. Consequently, the numbers six and 22 are important figures, and have been encoded into this piece in various ways.

The first section, marked “With concentrated intensity,” is characterized by the juxtaposition of tonal ambiguity and tonal affirmation, as well as the use of polymetric counterpoint (often 7/8 against 4/4 or 7/8 against 3/4). The middle section, marked “Crystalline,” provides contrast in its use of unmetered sections and independent tempos. The refraction of light is represented in this movement by a 22-note row based on a hexachord (B-flat, F, C, G, A, E) introduced in measure 164 of the first section. The third section, marked “With frenetic energy,” begins without pause on an arresting entrance of the drums playing an additive rhythmic pattern. This pattern (5+7+9+1) amounts to 22 eighth-note pulses and informs much of the motivic and structural considerations for the remainder of the piece.
ContributorsMitton, Stephen LeRoy (Author) / DeMars, James (Thesis advisor) / Norton, Kay (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2017
157271-Thumbnail Image.png
Description
Arnold Schoenberg’s Pierrot Lunaire, written in 1912 for an ensemble of flute, clarinet, piano, violin, cello, and voice
arrator (with certain instrumental doublings), has, since its premiere, greatly influenced composers writing chamber music. In fact, this particular instrumentation has become known as the “Pierrot Ensemble,” with variations on Schoenberg’s creation used

Arnold Schoenberg’s Pierrot Lunaire, written in 1912 for an ensemble of flute, clarinet, piano, violin, cello, and voice
arrator (with certain instrumental doublings), has, since its premiere, greatly influenced composers writing chamber music. In fact, this particular instrumentation has become known as the “Pierrot Ensemble,” with variations on Schoenberg’s creation used by Igor Stravinsky, Luciano Berio, and many other composers.

There are many resources devoted to music for chamber winds composed during the twentieth century, including those inspired by Schoenberg’s configuration. Additionally, many sources have comprehensively covered known chamber music composed before 1900. However, there is very little research dedicated to chamber wind music composed since 2000.

The purpose of this study is to contribute to the body of research about the music by: 1) creating an annotated bibliography of 21st century wind chamber music.; and 2) thereby catalyzing the discovery of recently composed wind chamber music. Moreover, I hope to address and encourage diversity through my research. To that end, the Composer’s Diversity Database was used as a primary resource for discovering compositions written since 2000 for wind/percussion-based ensembles comprising six to thirteen players.
ContributorsBrown, Jr., Fredrick Marcell (Author) / Hill, Gary W. (Thesis advisor) / Caslor, Jason (Committee member) / Schmelz, Peter (Committee member) / Stover, Christopher (Committee member) / Arizona State University (Publisher)
Created2019