Matching Items (27)
151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151241-Thumbnail Image.png
Description
Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific

Cancer is a disease that affects millions of people worldwide each year. The metastatic progression of cancer is the number one reason for cancer related deaths. Cancer preventions rely on the early identification of tumor cells as well as a detailed understanding of cancer as a whole. Identifying proteins specific to tumor cells provide an opportunity to develop noninvasive clinical tests and further our understanding of tumor biology. Using liquid chromatography-mass spectrometry (LC-MS/MS) a short peptide was identified in pancreatic cancer patient plasma that was not found in normal samples, and mapped back to QSOX1 protein. Immunohistochemistry was performed probing for QSOX1 in tumor tissue and discovered that QSOX1 is highly over-expressed in pancreatic and breast tumors. QSOX1 is a FAD-dependent sulfhydryl oxidase that is extremely efficient at forming disulfide bonds in nascent proteins. While the enzymology of QSOX1 has been well studied, the tumor biology of QSOX1 has not been studied. To begin to determine the advantage that QSOX1 over-expression provides to tumors, short hairpin RNA (shRNA) were used to reduce the expression of QSOX1 in human tumor cell lines. Following the loss of QSOX1 growth rate, apoptosis, cell cycle and invasive potential were compared between tumor cells transduced with shQSOX1 and control tumor cells. Knock-down of QSOX1 protein suppressed tumor cell growth but had no effect on apoptosis and cell cycle regulation. However, shQSOX1 dramatically inhibited the abilities of both pancreatic and breast tumor cells to invade through Matrigel in a modified Boyden chamber assay. Mechanistically, shQSOX1-transduced tumor cells secreted MMP-2 and -9 that were less active than MMP-2 and -9 from control cells. Taken together, these results suggest that the mechanism of QSOX1-mediated tumor cell invasion is through the post-translational activation of MMPs. This dissertation represents the first in depth study of the role that QSOX1 plays in tumor cell biology.
ContributorsKatchman, Benjamin A (Author) / Lake, Douglas F. (Thesis advisor) / Rawls, Jeffery A (Committee member) / Miller, Laurence J (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2012
136872-Thumbnail Image.png
Description
Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found

Quercetin 2,3-dioxygenase from Bacillus subtilis has been identified and characterized as the first known prokaryotic quercetinase. This enzyme catalyzes the cleavage of the O-heteroaromatic ring of the flavonol quercetin to the corresponding depside and carbon monoxide. The first quercetinase was characterized from a species of Aspergillus genus, and was found to contain one Cu2+ per subunit. For many years, it was thought that the B. subtilis quercetinase contained two Fe2+ ions per subunit; however, it has since been discovered that Mn2+ is a much more likely cofactor. Studies of overexpressed bacterial enzyme in E. coli indicated that this enzyme may be active with other metal ions (e.g. Co2+); however, the production of enzyme with full metal incorporation has only been possible with Mn2+. This study explores the notion that metal manipulation after translation, by partially unfolding the enzyme, chelating the metal ions, and then refolding the protein in the presence of an excess of divalent metal ions, could generate enzyme with full metal occupancy. The protocols presented here included testing for activity after incubating purified quercetinase with EDTA, DDTC, imidazole and GndHCl. It was found that the metal chelators had little to no effect on quercetinase activity. Imidazole did appear to inhibit the enzyme at concentrations in the millimolar range. In addition, the quercetinase was denatured in GndHCl at concentrations above 1 M. Recovering an active enzyme after partial or complete unfolding proved difficult, if not impossible.
ContributorsKrojanker, Elan Daniel (Author) / Francisco, Wilson (Thesis director) / Allen, James P. (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor)
Created2014-05
Description
This dissertation investigates the potential for enzyme induced carbonate cementation as an alternative to Portland cement for creating building material from sand aggregate. We create a solution of urease enzyme, calcium chloride (CaCl2), and urea in water and added sand. The urease catalyzes the synthesis of carbonate from urea, and

This dissertation investigates the potential for enzyme induced carbonate cementation as an alternative to Portland cement for creating building material from sand aggregate. We create a solution of urease enzyme, calcium chloride (CaCl2), and urea in water and added sand. The urease catalyzes the synthesis of carbonate from urea, and the carbonate then bonds with a dissociated calcium ion and precipitates from the solution as calcium carbonate (CaCO3). This precipitate can form small crystal bridges at contacts between sand grains that lock the sand grains in place. Using enzyme induced carbonate precipitation we created a cemented sand sample with a maximum compressive strength of 319 kPa and an elastic modulus of approximately 10 MPa. Images from the SEM showed that a major failure mechanism in the cemented samples was the delamination of the CaCO3 from the sand grains. We observed that CaCO3 cementation did not when solutions with high concentrations of CaCl2 and urea were used.
ContributorsBull, Michael Ryan (Author) / Kavazanjian, Edward (Thesis director) / Chawla, Nikhilesh (Committee member) / Barrett, The Honors College (Contributor) / Materials Science and Engineering Program (Contributor)
Created2014-05
136443-Thumbnail Image.png
Description
Due to a continued interest in the fundamental properties of dihydrofolate reductase (DHFR) and its enzymatic activities, this study employed the use of six fluorescent tryptophan derivatives, for single site amino acid replacements. The two positions 30 and 47 within DHFR were studied to discover the rate at which these

Due to a continued interest in the fundamental properties of dihydrofolate reductase (DHFR) and its enzymatic activities, this study employed the use of six fluorescent tryptophan derivatives, for single site amino acid replacements. The two positions 30 and 47 within DHFR were studied to discover the rate at which these larger tryptophan analogues may be incorporated. Additionally, it was to be determined how much activity the mutated DHFR’s could retain when compared to their wild type counterpart. Through a review of literature, it was shown that previous studies have illustrated successful incorporation and toleration of unnatural amino acids.
Each of the six analogues A through F were relatively efficiently incorporated into the enzyme and well tolerated. Each maintained at least a third of their catalytic activity, measured through the consumption of β-nicotinamide adenine dinucleotide phosphate. Primarily, derivatives B, C, and D were able to retain the highest amount of activity in each position; B and D were the most tolerated in positions 30 and 47 with respective values of 68 ± 6.1 and 80 ± 12. The findings in this study illustrate that single tryptophan derivatives are able to be incorporated into Escherichia coli DHFR while still allowing the maintenance of a significant portion of its enzymatic activity.
ContributorsBaldwin, Edwin Alexander (Author) / Hecht, Sidney (Thesis director) / Chen, Shengxi (Committee member) / Barrett, The Honors College (Contributor) / W. P. Carey School of Business (Contributor) / School of Life Sciences (Contributor)
Created2015-05
149330-Thumbnail Image.png
Description
Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the

Enzymes which regulate the metabolic reactions for sustaining all living things, are the engines of life. The discovery of molecules that are able to control enzyme activity is of great interest for therapeutics and the biocatalysis industry. Peptides are promising enzyme modulators due to their large chemical diversity and the existence of well-established methods for library synthesis. Microarrays represent a powerful tool for screening thousands of molecules, on a small chip, for candidates that interact with enzymes and modulate their functions. In this work, a method is presented for screening high-density arrays to discover peptides that bind and modulate enzyme activity. A viscous polyvinyl alcohol (PVA) solution was applied to array surfaces to limit the diffusion of product molecules released from enzymatic reactions, allowing the simultaneous measurement of enzyme activity and binding at each peptide feature. For proof of concept, it was possible to identify peptides that bound to horseradish peroxidase (HRP), alkaline phosphatase (APase) and â-galactosidase (â-Gal) and substantially alter their activities by comparing the peptide-enzyme binding levels and bound enzyme activity on microarrays. Several peptides, selected from microarrays, were able to inhibit â-Gal in solution, which demonstrates that behaviors selected from surfaces often transfer to solution. A mechanistic study of inhibition revealed that some of the selected peptides inhibited enzyme activity by binding to enzymes and inducing aggregation. PVA-coated peptide slides can be rapidly analyzed, given an appropriate enzyme assay, and they may also be assayed under various conditions (such as temperature, pH and solvent). I have developed a general method to discover molecules that modulate enzyme activity at desired conditions. As demonstrations, some peptides were able to promote the thermal stability of bound enzyme, which were selected by performing the microarray-based enzyme assay at high temperature. For broad applications, selected peptide ligands were used to immobilize enzymes on solid surfaces. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activities and stabilities. Peptide-modified surfaces may prove useful for immobilizing enzymes on surfaces with optimized orientation, location and performance, which are of great interest to the biocatalysis industry.
ContributorsFu, Jinglin (Author) / Woodbury, Neal W (Thesis advisor) / Johnston, Stephen A. (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2010
133582-Thumbnail Image.png
Description
Current wound closure technology is limited, and lacks key elements \u2014 such as the formation of an immediate seal \u2014 that could otherwise resolve some of the common and life threatening complications associated with certain surgeries. Previous research has produced nanosealants capable of providing that immediate seal through the use

Current wound closure technology is limited, and lacks key elements \u2014 such as the formation of an immediate seal \u2014 that could otherwise resolve some of the common and life threatening complications associated with certain surgeries. Previous research has produced nanosealants capable of providing that immediate seal through the use of laser activation with a near infrared laser. Here, we have developed a biocompatible suture utilizes the same mechanics to provide the tensile strength needed to replace or supplement existing suture lines. Laser activated tissue integrating sutures (LATIS), are shown to have 75% of the tensile strength of commercially available PGA sutures, while still exhibiting the same laser mediated localized heating effect at power densities of as low as 1.6 W/cm2. LATIS has been shown to reach the temperature ranges needed for protein interdigitation, but suffers from low wet mechanical strength. Preparatory steps or solvents for chemical crosslinking generally dehydrate LATIS sutures, causing a shriveling effect that weakens the overall mechanical strength of the suture. To resolve this, a new method of drying, by which LATIS sutures are dried under tension on a suspended platform, has been shown to decrease control suture strength, but restore the strength of chemically treated LATIS sutures to the level of control sutures or above. These promising results suggest that follow-up work with chemical cross-linkers may produce the increases in LATIS wet strength that are needed for its implementation in deeper tissue surgeries.
ContributorsChang, Andy (Author) / Rege, Kaushal (Thesis director) / Goklany, Sheba (Committee member) / School of Molecular Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
172924-Thumbnail Image.png
Description

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled

Between 1957 and 1959, Arthur Pardee, Francois Jacob, and Jacques Monod conducted a set of experiments at the Pasteur Institute in Paris, France, that was later called the PaJaMa Experiments, a moniker derived from the researchers' last names. In these experiments, they described how genes of a species of single-celled bacteria, called Escherichia coli (E. coli), controlled the processes by which enzymes were produced in those bacteria. In 1959, the researchers published their results in a paper titled 'The Genetic Control and Cytoplasmic Expression of 'Inducibility' in the Synthesis of b-galactosidase by E. coli'. When they compared mutated strains of E. coli to a normal strain, Pardee, Jacob, and Monod identified the abnormal regulation processes and enzymes produced by the mutated genes. The results showed how enzymes break down the molecules that the bacteria ingested. The PaJaMas experiments uncovered some of the molecular mechanisms that regulate how some genes yield enzymes in many species.

Created2015-05-28
173251-Thumbnail Image.png
Description

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed

In 2012, a team of scientists across the US conducted an experiment to find the mechanism that allowed a group of flatworms, planarians, to regenerate any body part. The group included Danielle Wenemoser, Sylvain Lapan, Alex Wilkinson, George Bell, and Peter Reddien. They aimed to identify genes that are expressed by planarians in response to wounds that initiated a regenerative mechanism. The researchers determined several genes as important for tissue regeneration. The investigation helped scientists explain how regeneration is initiated and describe the overall regenerative mechanism of whole organisms.

Created2017-05-09
175286-Thumbnail Image.jpg
Description

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things,

This illustration shows George Beadle and Edward Tatum's experiments with Neurospora crassa that indicated that single genes produce single enzymes. The pair conducted the experiments at Stanford University in Palo Alto, California. Enzymes are types of proteins that can catalyze reactions inside cells, reactions that produce a number of things, including nutrients that the cell needs. Neurospora crassa is a species of mold that grows on bread. In the early 1940s, Beadle and Tatum conducted an experiment to discover the abnormal genes in Neurospora mutants, which failed to produce specific nutrients needed to survive. (1) Beadle and Tatum used X-rays to cause mutations in the DNA of Neurospora, and then they grew the mutated Neurospora cells in glassware. (2) They grew several strains, represented in four groups of paired test tubes. For each group, Neurospora was grown in one of two types of growth media. One medium contained all the essential nutrients that the Neurospora needed to survive, which Beadle and Tatum called a complete medium. The second medium was a minimal medium and lacked nutrients that Neurospora needed to survive. If functioning normally and in the right conditions, however, Neurospora can produce these absent nutrients. (3) When Beadle and Tatum grew the mutated mold strains on both the complete and on the minimal media, all of the molds survived on the complete media, but not all of the molds survived on the minimal media (strain highlighted in yellow). (4) For the next step, the researchers added nutrients to the minimal media such that some glassware received an amino acid mixture (represented as colored squares) and other glassware received a vitamin mixture (represented as colored triangles) in an attempt to figure out which kind of nutrients the mutated molds needed. The researchers then took mold from the mutant mold strain that had survived on a complete medium and added that mold to the supplemented minimal media. They found that in some cases the mutated mold grew on media supplemented only with vitamins but not on media supplemented only with amino acids. (5) To discover which vitamins the mutant molds needed, Beadle and Tatum used several tubes with the minimal media, supplementing each one with a different vitamin, and then they attempted to grow the mutant mold in each tube. They found that different mutant strains of the mold grew only on media supplemented with different kinds of vitamins, for instance vitamin B6 for one strain, and vitamin B1 for another. In experiments not pictured, Beadle and Tatum found in step (4) that other strains of mutant mold grew on minimal media supplemented only with amino acids but not on minimal media supplemented only with vitamins. When they repeated step (5) on those strains and with specific kinds of amino acids in the different test tubes, they found that the some mutated mold strains grew on minimal media supplemented solely with one kind of amino acid, and others strains grew only on minimal media supplemented with other kinds of amino acids. For both the vitamins and amino acid cases, Beadle and Tatum concluded that the X-rays had mutated different genes in Neurospora, resulting in different mutant strains of Neurospora cells. In a cell of a given strain, the X-rays had changed the gene normally responsible for producing an enzyme that catalyzed a vitamin or an amino acid. As a result, the Neurospora cell could no longer produce that enzyme, and thus couldn't catalyze a specific nutrient.

Created2016-10-12