Matching Items (3)
Filtering by

Clear all filters

133465-Thumbnail Image.png
Description
The idea that everything occurs linearly, over the course of time, is evident in the way we construct our sentences and track our understanding of our own lives. It is within this understanding we perform, compose, and listen to music. Since language occurs over time, there is the understanding that

The idea that everything occurs linearly, over the course of time, is evident in the way we construct our sentences and track our understanding of our own lives. It is within this understanding we perform, compose, and listen to music. Since language occurs over time, there is the understanding that words and ideas are uttered like marks on a continuous line, some closer together, others with large gaps in-between. It has been the work of linguists and philosophers to understand the patterns, or the rhythm, of speech and language in this way, and while there is no definitive or consistent model for how language is rhythmically produced in any language, it has been determined that rhythm is considered and perceived when language is spoken or heard. It is this perception of rhythm in speech that defines how language comprehension is acquired before phonetic skills. This paper will explore the effects of rhythm in language during infant's prelexical period, the correlations of rhythm and developing reading skills, and finally, explore how the intervals between vocalic utterances become normalized and consistent in poetic readings.
ContributorsZillich, Nicolette Isabel (Author) / Mantie, Roger (Thesis director) / Laing, Alexander (Committee member) / School of Music (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
135081-Thumbnail Image.png
Description
Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a

Last Hymn was created by the team of Tyler Pinho, Jefferson Le, and Curtis Spence with the desire to create an eccentric Role Playing Game focused on the exploration of a strange, dying world. Battles in the game are based off of rhythm games like Dance Dance Revolution using a procedural generation algorithm that makes every encounter unique. This is then complemented with the path system where each enemy has unique rhythm patterns to give them different types of combat opportunities. In Last Hymn, the player arrives on a train at the World's End Train Station where they are greeted by a mysterious figure and guided to the Forest where they witness the end of the world and find themselves back at the train station before they left for the Forest. With only a limited amount of time per cycle of the world, the player must constantly weigh the opportunity cost of each decision, and only with careful thought, conviction, and tenacity will the player find a conclusion from the never ending cycle of rebirth. Blending both Shinto architecture and modern elements, Last Hymn used a "fantasy-chic" aesthetic in order to provide memorable locations and dissonant imagery. As the player explores they will struggle against puzzles and dynamic, rhythm based combat while trying to unravel the mystery of the world's looping time. Last Hymn was designed to develop innovative and dynamic new solutions for combat, exploration, and mapping. From this project all three team members were able to grow their software development and game design skills, achieving goals like improved level design, improved asset pipelines while simultaneously aiming to craft an experience that will be unforgettable for players everywhere.
ContributorsPinho, Tyler (Co-author) / Le, Jefferson (Co-author) / Spence, Curtis (Co-author) / Nelson, Brian (Thesis director) / Walker, Erin (Committee member) / Kobayashi, Yoshihiro (Committee member) / Computer Science and Engineering Program (Contributor) / Computing and Informatics Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
147686-Thumbnail Image.png
Description

When a sports performance is at its peak, it is akin to a musical performance in the sense that each player seems to perform their part effortlessly, creating a rhythmic flow of counterparts all moving as one. Rhythm and timing are vital elements in sports like basketball in which syncopated

When a sports performance is at its peak, it is akin to a musical performance in the sense that each player seems to perform their part effortlessly, creating a rhythmic flow of counterparts all moving as one. Rhythm and timing are vital elements in sports like basketball in which syncopated passing and shooting appear to facilitate accuracy. This study tests if shooting baskets “in rhythm,” as measured by the catch-to-release time, reliably enhances shooting accuracy. It then tests if an “in rhythm” timing is commonly detected and agreed upon by observers, and if observer timing ratings are related to shooting accuracy. Experiment 1 tests the shooting accuracy of two amateur basketball players after different delays between catching a pass and shooting the ball. Shots were taken from the three-point line (180 shots). All shots were recorded and analyzed for accuracy as a function of delay time, and the recordings were used to select stimuli varying in timing intervals for observers to view in Experiment 2. In Experiment 2, 24 observers each reviewed 17 video clips of the shots to test visual judgment of shooting-in-rhythm. The delay times ranged from 0.3 to 3.2 seconds, with a goal of having some of the shots taken too fast, some close to in rhythm, and some too slow. Observers rated if each shot occurs too fast, in rhythm slightly fast, in rhythm slightly slow, or too slow. In Experiment 1, shooters exhibited a significant cubic fit with better shooting performance in the middle of the timing distribution (1.2 sec optimal delay) between catching a pass and shooting. In Experiment, 2 observers reliably judged shots to be in rhythm centered at 1.1 ± 0.2 seconds, which matched the delay that leads to optimal performance for the shooters found in Experiment 1. The pattern of findings confirms and validates that there is a common “in rhythm” catch-to-shoot delay time of a little over 1 second that both optimizes shooter accuracy and is reliably recognized by observers.

ContributorsFlood, Cierra Elizabeth (Author) / McBeath, Michael (Thesis director) / Corbin, William (Committee member) / Department of Psychology (Contributor) / College of Integrative Sciences and Arts (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05