Matching Items (3)
Filtering by

Clear all filters

133253-Thumbnail Image.png
Description
Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert

Elevated nitrate (NO3-) concentration in streams and rivers has contributed to environmental problems such as downstream eutrophication and loss of biodiversity. Sycamore Creek in Arizona is nitrogen limited, but previous studies have demonstrated high potential for denitrification, a microbial process in which biologically active NO3- is reduced to relatively inert dinitrogen (N2) gas. Oak Creek is similarly nitrogen limited, but NO3- concentration in reaches surrounded by agriculture can be double that of other reaches. We employed a denitrification enzyme assay (DEA) to compare potential denitrification rate between differing land uses in Oak Creek and measured whole system N2 flux using a membrane inlet mass spectrometer to compare differences in actual denitrification rates at Sycamore and Oak Creek. We anticipated that NO3- would be an important limiting factor for denitrifiers; consequentially, agricultural land use reaches within Oak Creek would have the highest potential denitrification rate. We expected in situ denitrification rate to be higher in Oak Creek than Sycamore Creek due to elevated NO3- concentration, higher discharge, and larger streambed surface area. DEA results are forthcoming, but analysis of potassium chloride (KCl) extraction data showed that there were no significant differences between sites in sediment extractable NO3- on either a dry mass or organic mass basis. Whole-reach denitrification rate was inconclusive in Oak Creek, and though a significant positive flux in N2 from upstream to downstream was measured in Sycamore Creek, the denitrification rate was not significantly different from 0 after accounting for reaeration, suggesting that denitrification does not account for a significant portion of the NO3- uptake in Sycamore Creek. Future work is needed to address the specific factors limiting denitrification in this system.
ContributorsCaulkins, Corey Robert (Author) / Grimm, Nancy (Thesis director) / Childers, Daniel (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
152972-Thumbnail Image.png
Description

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used

Though cities occupy only a small percentage of Earth's terrestrial surface, humans concentrated in urban areas impact ecosystems at local, regional and global scales. I examined the direct and indirect ecological outcomes of human activities on both managed landscapes and protected native ecosystems in and around cities. First, I used highly managed residential yards, which compose nearly half of the heterogeneous urban land area, as a model system to examine the ecological effects of people's management choices and the social drivers of those decisions. I found that a complex set of individual and institutional social characteristics drives people's decisions, which in turn affect ecological structure and function across scales from yards to cities. This work demonstrates the link between individuals' decision-making and ecosystem service provisioning in highly managed urban ecosystems.

Second, I examined the distribution of urban-generated air pollutants and their complex ecological outcomes in protected native ecosystems. Atmospheric carbon dioxide (CO2), reactive nitrogen (N), and ozone (O3) are elevated near human activities and act as both resources and stressors to primary producers, but little is known about their co-occurring distribution or combined impacts on ecosystems. I investigated the urban "ecological airshed," including the spatial and temporal extent of N deposition, as well as CO2 and O3 concentrations in native preserves in Phoenix, Arizona and the outlying Sonoran Desert. I found elevated concentrations of ecologically relevant pollutants co-occur in both urban and remote native lands at levels that are likely to affect ecosystem structure and function. Finally, I tested the combined effects of CO2, N, and O3 on the dominant native and non-native herbaceous desert species in a multi-factor dose-response greenhouse experiment. Under current and predicted future air quality conditions, the non-native species (Schismus arabicus) had net positive growth despite physiological stress under high O3 concentrations. In contrast, the native species (Pectocarya recurvata) was more sensitive to O3 and, unlike the non-native species, did not benefit from the protective role of CO2. These results highlight the vulnerability of native ecosystems to current and future air pollution over the long term. Together, my research provides empirical evidence for future policies addressing multiple stressors in urban managed and native landscapes.

ContributorsMiessner Cook, Elizabeth (Author) / Hall, Sharon J (Thesis advisor) / Boone, Christopher G (Committee member) / Collins, Scott L. (Committee member) / Grimm, Nancy (Committee member) / Arizona State University (Publisher)
Created2014
155657-Thumbnail Image.png
Description

Constructed treatment wetlands (CTW) have been a cost-efficient technological solution to treat different types of wastewater but may also be sources of emitters of methane (CH4) and nitrous oxide (N2O). Thus, my objective for this dissertation was to investigate CH4 and N2O fluxes via multiple pathways from the Tres Rios

Constructed treatment wetlands (CTW) have been a cost-efficient technological solution to treat different types of wastewater but may also be sources of emitters of methane (CH4) and nitrous oxide (N2O). Thus, my objective for this dissertation was to investigate CH4 and N2O fluxes via multiple pathways from the Tres Rios CTW located in Phoenix, AZ, USA. I measured gas fluxes from the CTW along a whole-system gradient (from inflow to outflow) and a within-marsh gradient (shoreline, middle, and open water sites). I found higher diffusive CH4 release in the summer compared to spring and winter seasons. Along the whole-system gradient, I found greater CH4 and N2O emission fluxes near the inflow compared to near the outflow. Within the vegetated marsh, I found greater CH4 emission fluxes at the vegetated marsh subsites compared to the open water. In contrast, N2O emissions were greater at the marsh-open water locations compared to interior marsh. To study the plant-mediated pathway, I constructed small gas chambers fitted to Typha spp. leaves. I found plant-mediated CH4 fluxes were greater near the outflow than near the inflow and that CH4 fluxes were higher from lower sections of plants compared to higher sections. Overall, Typha spp. emitted a mean annual daily flux rate of 358.23 mg CH4 m-2 d-1. Third, using a 30-day mesocosm experiment I studied the effects of three different drydown treatments (2, 7, 14 days) on the fluxes of CH4 and N2O from flooded CTW soils. I found that CH4 fluxes were not significantly affected by soil drydown events. Soils that were dry for 7 days shifted from being N2O sources to sinks upon inundation. As a result, the 7-day drydown soils were sinks while the 14-day drydown soils showed significant N2O release. My results emphasize the importance of studying ecological processes in CTWs to improve their design and management strategies so we can better mitigate their greenhouse gas emissions.

ContributorsRamos, Jorge, 1984- (Author) / Childers, Daniel L. (Thesis advisor) / Grimm, Nancy (Committee member) / Sala, Osvaldo E. (Committee member) / Vivoni, Enrique R (Committee member) / Arizona State University (Publisher)
Created2017