Matching Items (6)
150547-Thumbnail Image.png
Description
This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but

This dissertation presents methods for addressing research problems that currently can only adequately be solved using Quality Reliability Engineering (QRE) approaches especially accelerated life testing (ALT) of electronic printed wiring boards with applications to avionics circuit boards. The methods presented in this research are generally applicable to circuit boards, but the data generated and their analysis is for high performance avionics. Avionics equipment typically requires 20 years expected life by aircraft equipment manufacturers and therefore ALT is the only practical way of performing life test estimates. Both thermal and vibration ALT induced failure are performed and analyzed to resolve industry questions relating to the introduction of lead-free solder product and processes into high reliability avionics. In chapter 2, thermal ALT using an industry standard failure machine implementing Interconnect Stress Test (IST) that simulates circuit board life data is compared to real production failure data by likelihood ratio tests to arrive at a mechanical theory. This mechanical theory results in a statistically equivalent energy bound such that failure distributions below a specific energy level are considered to be from the same distribution thus allowing testers to quantify parameter setting in IST prior to life testing. In chapter 3, vibration ALT comparing tin-lead and lead-free circuit board solder designs involves the use of the likelihood ratio (LR) test to assess both complete failure data and S-N curves to present methods for analyzing data. Failure data is analyzed using Regression and two-way analysis of variance (ANOVA) and reconciled with the LR test results that indicating that a costly aging pre-process may be eliminated in certain cases. In chapter 4, vibration ALT for side-by-side tin-lead and lead-free solder black box designs are life tested. Commercial models from strain data do not exist at the low levels associated with life testing and need to be developed because testing performed and presented here indicate that both tin-lead and lead-free solders are similar. In addition, earlier failures due to vibration like connector failure modes will occur before solder interconnect failures.
ContributorsJuarez, Joseph Moses (Author) / Montgomery, Douglas C. (Thesis advisor) / Borror, Connie M. (Thesis advisor) / Gel, Esma (Committee member) / Mignolet, Marc (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2012
133215-Thumbnail Image.png
Description
Mistuning is defined as the blade-to-blade variation of bladed disks caused by slight changes in material or geometric properties; mistuned blades can cause significant increases in vibrational response. The primary goal of this thesis is to describe the relationship between coupling index and amplification factors of mistuned bladed disks with

Mistuning is defined as the blade-to-blade variation of bladed disks caused by slight changes in material or geometric properties; mistuned blades can cause significant increases in vibrational response. The primary goal of this thesis is to describe the relationship between coupling index and amplification factors of mistuned bladed disks with various sets of parameters, targeting the veering zone. At around a coupling index of 0, the amplification factors tend to stay around 1. This is due to localization of energy, where no energy is "shared" between blades, and the response of mistuned blades remain at resonance. As coupling index increases, amplification factors reach a peak between coupling indices of 0.15 and 0.2, before experiencing a downward trend towards 1. As blade-to-disk interaction increases, more energy is "shared" across blades. This results in the upward trend of amplification factor as coupling index increases, until too much energy is "shared". Additionally, a reduced order model enriching-stripping process to match natural frequencies of Nastran simulations will be discussed. This thesis is a continuation of Saurav Sahoo's Master's thesis at Arizona State University, Approximate a-priori Estimation of the Response Amplification due to Geometric and Young's Modulus Mistuning.
ContributorsLiu, Gavin (Author) / Mignolet, Marc (Thesis director) / Murthy, Raghavendra (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
157667-Thumbnail Image.png
Description
In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced

In nature, it is commonly observed that animals and birds perform movement-based thermoregulation activities to regulate their body temperatures. For example, flapping of elephant ears or plumage fluffing in birds. Taking inspiration from nature and to explore the possibilities of such heat transfer enhancements, augmentation of heat transfer rates induced by the vibration of solid and well as novel flexible pinned heatsinks were studied in this research project. Enhancement of natural convection has always been very important in improving the performance of the cooling mechanisms. In this research, flexible heatsinks were developed and they were characterized based on natural convection cooling with moderately vibrating conditions. The vibration of heated surfaces such as motor surfaces, condenser surfaces, robotic arms and exoskeletons led to the motivation of the development of heat sinks having flexible fins with an improved heat transfer capacity. The performance of an inflexible, solid copper pin fin heat sink was considered as the baseline, current industry standard for the thermal performance. It is expected to obtain maximum convective heat transfer at the resonance frequency of the flexible pin fins. Current experimental results with fixed input frequency and varying amplitudes indicate that the vibration provides a moderate improvement in convective heat transfer, however, the flexibility of fins had negligible effects.
ContributorsPrabhu, Saurabh (Author) / Rykaczewski, Konrad (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2019
173763-Thumbnail Image.png
Description

In 'How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs' (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas, can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed

In 'How do Embryos Assess Risk? Vibrational Cues in Predator-Induced Hatching of Red-Eyed Treefrogs' (2005), Karen Warkentin reported on experiments she conducted to see how red-eyed treefrog embryos, Agalychnis callidryas, can distinguish between vibrations due to predator attacks and other environmental occurrences, such as storms. Though the ability of red-eyed treefrogs to alter their hatch timing had been documented, the specific cues that induce early hatching were not well understood. Warkentin's study demonstrated that, based on vibration signals alone, treefrog embryos can determine whether they are under attack from a predator and respond accordingly.

Created2012-04-07
165289-Thumbnail Image.png
Description

Ultra-short-pulse (USP) lasers in the visible range have been shown to have widespread sterilizing effects on pathogens, which is believed to be caused by mechanical perturbations induced in the pathogen that disrupt essential processes leading to inactivation. This paper demonstrates a complete inactivation of Zika virus, a single-stranded enveloped RNA

Ultra-short-pulse (USP) lasers in the visible range have been shown to have widespread sterilizing effects on pathogens, which is believed to be caused by mechanical perturbations induced in the pathogen that disrupt essential processes leading to inactivation. This paper demonstrates a complete inactivation of Zika virus, a single-stranded enveloped RNA virus, using USP-laser technology and adds to the growing body of literature on the effectiveness of USP-laser inactivation. The paper also surveys previous inactivation studies to draw inferences about the nature of the Zika virus inactivation. We suggest that the method of inactivation in Zika virus is the selective amalgamation of viral capsid proteins into a nonfunctional mass of proteins because of the laser-induced vibrations, which mechanically prevents the release of viral RNA. The survey of similar inactivation experiments also supports the notion that the viral antigens might be unaffected by USP-laser inactivation, justifying the exploration of vaccine development using USP-laser inactivated Zika virus.

ContributorsLangland, Dylan (Author) / Tsen, Kong-Thon (Thesis director) / Kibler, Karen (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2022-05
152640-Thumbnail Image.png
Description
As more and more stadia structures nowadays are being built by making use of new high strength building materials which tend to be lighter than the "old" ones, composite systems and also the fact that engineers, contractors and clients want their structures as optimized as possible, in terms of minimal

As more and more stadia structures nowadays are being built by making use of new high strength building materials which tend to be lighter than the "old" ones, composite systems and also the fact that engineers, contractors and clients want their structures as optimized as possible, in terms of minimal materials used, there is an inevitable side effect that comes with this. The result is that structures are more flexible, and thus they become susceptible to undergone vibration problems due to the action of dynamic loading. Pop/rock concerts, exhibitions, boxing matches, and so forth are staged to supplement the football/sport seasons. Consequently, stadia structures must resist not only static loading, but also dynamic loading, such as the human induced loads from various activities of the spectators which include, standing, jumping, stamping, clapping and dancing, particularly in response to touchdowns (in football matches) or musical beats (during concerts). Active and passive models of humans are studied to see how they influence the response in TCF Bank Stadium for different ranges in excitation frequencies, by performing dynamic analyses and comparing the results with the ones obtained from static analysis. Parameter estimation and system identification in mechanical sciences and structural engineering have become increasingly important areas of research in the last three decades. Many nondestructive testing methods are based on the concepts of system identification and parameter estimation. In this document, two parameter estimation algorithms are studied, namely the Equation Error Estimator and the Output Error Estimator, through the simulation of modal data obtained from a computer structural analysis program and comparisons of their results are presented so that future researchers are better informed about the two and therefore can decide which one would give the best results for their application.
ContributorsAldaco Lopez, Manuel (Author) / Hjelmstad, Keith D. (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Fafitis, Apostolos (Committee member) / Arizona State University (Publisher)
Created2014