Matching Items (2)
Filtering by

Clear all filters

136488-Thumbnail Image.png
Description
We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a

We develop the mathematical tools necessary to describe the interaction between a resonant pole and a threshold energy. Using these tools, we analyze the properties an opening threshold has on the resonant pole mass (the "cusp effect"), leading to an effect called "pole-dragging." We consider two models for resonances: a molecular, mesonic model, and a color-nonsinglet diquark plus antidiquark model. Then, we compare the pole-dragging effect due to these models on the masses of the f0(980), the X(3872), and the Zb(10610) and compare the effect's magnitude. We find that, while for lower masses, such as the f 0 (980), the pole-dragging effect that arises from the molecular model is more significant, the diquark model's pole-dragging effect becomes dominant at higher masses such as those of the X(3872) and the Z b (10610). This indicates that for lower threshold energies, diquark models may have less significant effects on predicted resonant masses than mesonic models, but for higher threshold energies, it is necessary to include the pole-dragging effect due to a diquark threshold in high-precision QCD calculations.
ContributorsBlitz, Samuel Harris (Author) / Richard, Lebed (Thesis director) / Comfort, Joseph (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Physics (Contributor) / Barrett, The Honors College (Contributor)
Created2015-05
158537-Thumbnail Image.png
Description
The current research is based on the principles of three-dimensional discrete element method (3D – DEM) through simulations, by using heat transfer models in EDEM, to investigate the effects of fill level, rotation rate and particle size on the steady-state conduction heat transfer in rotary drums. The high heat and

The current research is based on the principles of three-dimensional discrete element method (3D – DEM) through simulations, by using heat transfer models in EDEM, to investigate the effects of fill level, rotation rate and particle size on the steady-state conduction heat transfer in rotary drums. The high heat and mass transfer rates obtained through rotary drums make them very useful for powder mixing and heating processes in metallurgical, cement, mining, pharmaceutical, detergent and other particulate processing applications. However, these complex processes are difficult to model and operate since the particles can have a wide range of properties, and there is currently no way to predict the optimal operating conditions for a given material.

Steady-state heat transfer by conduction forms the basis for understanding other steady-state and unsteady-state heat transfer in a rotary drum – conduction, convection and radiation. Statistical analysis is carried out to determine the effects of these process parameters and find optimal operating conditions, which will thereby improve the heat transfer efficiency in rotary drums. A stainless-steel drum with a diameter of 6 inches and a length of 3 inches was modeled in EDEM with silica beads of sizes 2 mm, 3 mm and 4 mm at fill levels of 10%, 17.5% and 25%, and at rotation rates of 2 rpm, 5 rpm and 10 rpm. It was found that the heating uniformity increased with decreasing particle size, decreasing fill level and increasing rotation rate. This research is the first step towards studying the other heat transfer modes and various other process parameters. Better understanding of the various heat transfer modes, when used in combination for heating the particles, will be beneficial in improving the operating efficiency, reducing material costs and leading to significant energy conservation on a global scale.
ContributorsBheda, Bhaumik (Author) / Emady, Heather (Thesis advisor) / Muhich, Christopher (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2020