Matching Items (467)
Filtering by

Clear all filters

ContributorsChan, Robbie (Performer) / McCarrel, Kyla (Performer) / Sadownik, Stephanie (Performer) / ASU Library. Music Library (Contributor)
Created2018-04-18
151631-Thumbnail Image.png
Description
Whenever a text is transmitted, or communicated by any means, variations may occur because editors, copyists, and performers are often not careful enough with the source itself. As a result, a flawed text may come to be accepted in good faith through repetition, and may often be preferred over the

Whenever a text is transmitted, or communicated by any means, variations may occur because editors, copyists, and performers are often not careful enough with the source itself. As a result, a flawed text may come to be accepted in good faith through repetition, and may often be preferred over the authentic version because familiarity with the flawed copy has been established. This is certainly the case with regard to Manuel M. Ponce's guitar editions. An inexact edition of a musical work is detrimental to several key components of its performance: musical interpretation, aesthetics, and the original musical concept of the composer. These phenomena may be seen in the case of Manuel Ponce's Suite in D Major for guitar. The single published edition by Peer International Corporation in 1967 with the revision and fingering of Manuel López Ramos contains many copying mistakes and intentional, but unauthorized, changes to the original composition. For the present project, the present writer was able to obtain a little-known copy of the original manuscript of this work, and to document these discrepancies in order to produce a new performance edition that is more closely based on Ponce's original work.
ContributorsReyes Paz, Ricardo (Author) / Koonce, Frank (Thesis advisor) / Solis, Theodore (Committee member) / Rotaru, Catalin (Committee member) / Arizona State University (Publisher)
Created2013
ContributorsDaval, Charles (Performer) / ASU Library. Music Library (Publisher)
Created2018-03-26
ContributorsMayo, Joshua (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-29
ContributorsDominguez, Ramon (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-15
ContributorsWhite, Bill (Performer) / ASU Library. Music Library (Publisher)
Created2021-04-03
ContributorsSanchez, Armand (Performer) / Nordstrom, Nathan (Performer) / Roubison, Ryan (Performer) / ASU Library. Music Library (Publisher)
Created2018-04-13
ContributorsMiranda, Diego (Performer)
Created2018-04-06
132898-Thumbnail Image.png
Description
The intention of this report is to use computer simulations to investigate the viability of two materials, water and polyethylene, as shielding against space radiation. First, this thesis discusses some of the challenges facing future and current manned space missions as a result of galactic cosmic radiation, or GCR. The

The intention of this report is to use computer simulations to investigate the viability of two materials, water and polyethylene, as shielding against space radiation. First, this thesis discusses some of the challenges facing future and current manned space missions as a result of galactic cosmic radiation, or GCR. The project then uses MULASSIS, a Geant4 based radiation simulation tool, to analyze the effectiveness of water and polyethylene based radiation shields against proton radiation with an initial energy of 1 GeV. This specific spectrum of radiation is selected because it a component of GCR that has been shown by previous literature to pose a significant threat to humans on board spacecraft. The analysis of each material indicated that both would have to be several meters thick to adequately protect crew against the simulated radiation over a several year mission. Additionally, an analysis of the mass of a simple spacecraft model with different shield thicknesses showed that the mass would increase significantly with internal space. Thus, using either material as a shield would be expensive as a result of the cost of lifting a large amount of mass into orbit.
ContributorsBonfield, Maclain Peter (Author) / Holbert, Keith (Thesis director) / Young, Patrick (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05