Matching Items (2,111)
Filtering by

Clear all filters

132834-Thumbnail Image.png
Description
Exchange traded funds (ETFs) in many ways are similar to more traditional closed-end mutual
funds, although thee differ in a crucial way. ETFs rely on a creation and redemption feature to
achieve their functionality and this mechanism is designed to minimize the deviations that occur
between the ETF’s listed price and the net

Exchange traded funds (ETFs) in many ways are similar to more traditional closed-end mutual
funds, although thee differ in a crucial way. ETFs rely on a creation and redemption feature to
achieve their functionality and this mechanism is designed to minimize the deviations that occur
between the ETF’s listed price and the net asset value of the ETF’s underlying assets. However
while this does cause ETF deviations to be generally lower than their mutual fund counterparts,
as our paper explores this process does not eliminate these deviations completely. This article
builds off an earlier paper by Engle and Sarkar (2006) that investigates these properties of
premiums (discounts) of ETFs from their fair market value. And looks to see if these premia
have changed in the last 10 years. Our paper then diverges from the original and takes a deeper
look into the standard deviations of these premia specifically.
Our findings show that over 70% of an ETFs standard deviation of premia can be
explained through a linear combination consisting of two variables: a categorical (Domestic[US],
Developed, Emerging) and a discrete variable (time-difference from US). This paper also finds
that more traditional metrics such as market cap, ETF price volatility, and even 3rd party market
indicators such as the economic freedom index and investment freedom index are insignificant
predictors of an ETFs standard deviation of premia. These findings differ somewhat from
existing literature which indicate that these factors should have a significant impact on the
predictive ability of an ETFs standard deviation of premia.
ContributorsHenning, Thomas Louis (Co-author) / Zhang, Jingbo (Co-author) / Simonson, Mark (Thesis director) / Wendell, Licon (Committee member) / School of Mathematical and Statistical Sciences (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
173937-Thumbnail Image.png
Description

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty

Leonard Hayflick studied the processes by which cells age during the twentieth and twenty-first centuries in the United States. In 1961 at the Wistar Institute in the US, Hayflick researched a phenomenon later called the Hayflick Limit, or the claim that normal human cells can only divide forty to sixty times before they cannot divide any further. Researchers later found that the cause of the Hayflick Limit is the shortening of telomeres, or portions of DNA at the ends of chromosomes that slowly degrade as cells replicate. Hayflick used his research on normal embryonic cells to develop a vaccine for polio, and from HayflickÕs published directions, scientists developed vaccines for rubella, rabies, adenovirus, measles, chickenpox and shingles.

Created2014-07-20
173939-Thumbnail Image.png
Description

Although best known for his work with the fruit fly, for which he earned a Nobel Prize and the title "The Father of Genetics," Thomas Hunt Morgan's contributions to biology reach far beyond genetics. His research explored questions in embryology, regeneration, evolution, and heredity, using a variety of approaches.

Created2007-09-25
173947-Thumbnail Image.jpg
Created1935