Matching Items (6)
153412-Thumbnail Image.png
Description
The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is essential for the innate immune response to danger signals. Importantly, the NLRP3 inflammasome responds to structurally and functionally dissimilar stimuli. It is currently unknown how the NLRP3 inflammasome responds to such diverse triggers. This dissertation investigates the role of ion flux

The NLR family, pyrin domain-containing 3 (NLRP3) inflammasome is essential for the innate immune response to danger signals. Importantly, the NLRP3 inflammasome responds to structurally and functionally dissimilar stimuli. It is currently unknown how the NLRP3 inflammasome responds to such diverse triggers. This dissertation investigates the role of ion flux in regulating the NLRP3 inflammasome. Project 1 explores the relationship between potassium efflux and Syk tyrosine kinase. The results reveal that Syk activity is upstream of mitochondrial oxidative signaling and is crucial for inflammasome assembly, pro-inflammatory cytokine processing, and caspase-1-dependent pyroptotic cell death. Dynamic potassium imaging and molecular analysis revealed that Syk is downstream of, and regulated by, potassium efflux. Project 1 reveals the first identified intermediate regulator of inflammasome activity regulated by potassium efflux. Project 2 focuses on P2X7 purinergic receptor-dependent ion flux in regulating the inflammasome. Dynamic potassium imaging revealed an ATP dose-dependent efflux of potassium driven by P2X7. Surprisingly, ATP induced mitochondrial potassium mobilization, suggesting a mitochondrial detection of purinergic ion flux. ATP-induced potassium and calcium flux was found to regulate mitochondrial oxidative signaling upstream of inflammasome assembly. First-ever multiplexed imaging of potassium and calcium dynamics revealed that potassium efflux is necessary for calcium influx. These results suggest that ATP-induced potassium efflux regulates the inflammasome by calcium influx-dependent mitochondrial oxidative signaling. Project 2 defines a coordinated cation flux dependent on the efflux of potassium and upstream of mitochondrial oxidative signaling in inflammasome regulation. Lastly, this dissertation contributes two methods that will be useful for investigating inflammasome biology: an optimized pipeline for single cell transcriptional analysis, and a mouse macrophage cell line expressing a genetically encoded intracellular ATP sensor. This dissertation contributes to understanding the fundamental role of ion flux in regulation of the NLRP3 inflammasome and identifies potassium flux and Syk as potential targets to modulate inflammation.
ContributorsYaron, Jordan Robin (Author) / Meldrum, Deirdre R (Thesis advisor) / Blattman, Joseph N (Committee member) / Glenn, Honor L (Committee member) / Arizona State University (Publisher)
Created2015
156855-Thumbnail Image.png
Description
The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting

The physiological phenomenon of sensing temperature is detected by transient

receptor (TRP) ion channels, which are pore forming proteins that reside in the

membrane bilayer. The cold and hot sensing TRP channels named TRPV1 and TRPM8

respectively, can be modulated by diverse stimuli and are finely tuned by proteins and

lipids. PIRT (phosphoinositide interacting regulator of TRP channels) is a small

membrane protein that modifies TRPV1 responses to heat and TRPM8 responses to cold.

In this dissertation, the first direct measurements between PIRT and TRPM8 are

quantified with nuclear magnetic resonance and microscale thermophoresis. Using

Rosetta computational biology, TRPM8 is modeled with a regulatory, and functionally

essential, lipid named PIP2. Furthermore, a PIRT ligand screen identified several novel

small molecular binders for PIRT as well a protein named calmodulin. The ligand

screening results implicate PIRT in diverse physiological functions. Additionally, sparse

NMR data and state of the art Rosetta protocols were used to experimentally guide PIRT

structure predictions. Finally, the mechanism of thermosensing from the evolutionarily

conserved sensing domain of TRPV1 was investigated using NMR. The body of work

presented herein advances the understanding of thermosensing and TRP channel function

with TRP channel regulatory implications for PIRT.
ContributorsSisco, Nicholas John (Author) / Van Horn, Wade D (Thesis advisor) / Mills, Jeremy H (Committee member) / Wang, Xu (Committee member) / Yarger, Jeff L (Committee member) / Arizona State University (Publisher)
Created2018
157303-Thumbnail Image.png
Description
All organisms need to be able to sense and respond to their environment. Much of this process takes place via proteins embedded in the cell membrane, the border between a living thing and the external world. Transient receptor potential (TRP) ion channels are a superfamily of membrane proteins that play

All organisms need to be able to sense and respond to their environment. Much of this process takes place via proteins embedded in the cell membrane, the border between a living thing and the external world. Transient receptor potential (TRP) ion channels are a superfamily of membrane proteins that play diverse roles in physiology. Among the 27 TRP channels found in humans and other animals, TRP melastatin 8 (TRPM8) and TRP vanilloid 1 (TRPV1) are the primary sensors of cold and hot temperatures, respectively. They underlie the molecular basis of somatic temperature sensation, but beyond this are also known to be involved in body temperature and weight regulation, inflammation, migraine, nociception, and some types of cancer. Because of their broad physiological roles, these channels are an attractive target for potential therapeutic interventions.

This dissertation presents experimental studies to elucidate the mechanisms underlying TRPM8 and TRPV1 function and regulation. Electrophysiology experiments show that modulation of TRPM8 activity by phosphoinositide interacting regulator of TRP (PIRT), a small membrane protein, is species dependent; human PIRT attenuates TRPM8 activity, whereas mouse PIRT potentiates the channel. Direct binding experiments and chimeric mouse-human TRPM8 channels reveal that this regulation takes place via the transmembrane domain of the channel. Ligand activation of TRPM8 is also investigated. A mutation in the linker between the S4 and S5 helices is found to generally decrease TRPM8 currents, and to specifically abrogate functional response to the potent agonist icilin without affecting icilin binding.

The heat activation thermodynamics of TRPV1 are also probed using temperature-controlled electrophysiology. The magnitude of the gating enthalpy of human TRPV1 is found to be similar to other species reported in the literature. Human TRPV1 also features an apparent heat inactivation process that results in reduced heat sensitivity after exposure to elevated temperatures. The work presented in this dissertation sheds light on the varied mechanisms of thermosensitive TRP channel function and regulation.
ContributorsHilton, Jacob Kenneth (Author) / Van Horn, Wade D (Thesis advisor) / Levitus, Marcia (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2019
153773-Thumbnail Image.png
Description
Engineered nanoporous substrates made using materials such as silicon nitride or silica have been demonstrated to work as particle counters or as hosts for nano-lipid bilayer membrane formation. These mechanically fabricated porous structures have thicknesses of several hundred nanometers up to several micrometers to ensure mechanical stability of the membrane.

Engineered nanoporous substrates made using materials such as silicon nitride or silica have been demonstrated to work as particle counters or as hosts for nano-lipid bilayer membrane formation. These mechanically fabricated porous structures have thicknesses of several hundred nanometers up to several micrometers to ensure mechanical stability of the membrane. However, it is desirable to have a three-dimensional structure to ensure increased mechanical stability. In this study, circular silica shells used from Coscinodiscus wailesii, a species of diatoms (unicellular marine algae) were immobilized on a silicon chip with a micrometer-sized aperture using a UV curable polyurethane adhesive. The current conducted by a single nanopore of 40 nm diameter and 50 nm length, during the translocation of a 27 nm polystyrene sphere was simulated using COMSOL multiphysics and tested experimentally. The current conducted by a single 40 nm diameter nanopore of the diatom shell during the translocation of a 27 nm polystyrene sphere was simulated using COMSOL Multiphysics (28.36 pA) and was compared to the experimental measurement (28.69 pA) and Coulter Counting theory (29.95 pA).In addition, a mobility of 1.11 x 10-8 m2s-1V-1 for the 27 nm polystyrene spheres was used to convert the simulated current from spatial dependence to time dependence.

To achieve a sensing diameter of 1-2 nanometers, the diatom shells were used as substrates to perform ion-channel reconstitution experiments. The immobilized diatom shell was functionalized using silane chemistry and lipid bilayer membranes were formed. Functionalization of the diatom shell surface improves bilayer formation probability from 1 out of 10 to 10 out of 10 as monitored by impedance spectroscopy. Self-insertion of outer membrane protein OmpF of E.Coli into the lipid membranes could be confirmed using single channel recordings, indicating that nano-BLMs had formed which allow for fully functional porin activity. The results indicate that biogenic silica nanoporous substrates can be simulated using a simplified two dimensional geometry to predict the current when a nanoparticle translocates through a single aperture. With their tiered three-dimensional structure, diatom shells can be used in to form nano-lipid bilayer membranes and can be used in ion-channel reconstitution experiments similar to synthetic nanoporous membranes.
ContributorsRamakrishnan, Shankar (Author) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Dey, Sandwip (Committee member) / Thornton, Trevor (Committee member) / Arizona State University (Publisher)
Created2015
189325-Thumbnail Image.png
Description
Receiving signals and responding to the environment is crucial for survival for every living organism. One of those signals is being able to detect environmental and visceral temperatures. Transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) are ion channels within cells that allow higher organisms

Receiving signals and responding to the environment is crucial for survival for every living organism. One of those signals is being able to detect environmental and visceral temperatures. Transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) are ion channels within cells that allow higher organisms to detect hot and cold temperatures, respectively. These TRP channels are also implicated in diverse physiological roles including pain, obesity, and cancer. As a result, these channels have garnered interest as potential targets for therapeutic interventions. However, the entanglement of TRPV1 and TRPM8 polymodal activation where it responds to a variety of different stimuli has caused adverse side effects of body thermal dysregulation and misregulation when antagonizing these channels as drug targets. This dissertation will dissect the molecular mechanism and regulation of TRPV1 and TRPM8. An in-depth look into the complex and conflicting results in trying to find the key area for thermosensation as well as looking into disentangling the polymodal activation modes in TRPV1. The regulatory mechanism between TRPM8 with phosphoinositide interacting regulator of TRPs (PIRT) and calmodulin will be examined using nuclear magnetic resonance (NMR). A computational, experimental, and methodical approach into ancestral TRPM8 orthologs using whole-cell patch-clamp electrophysiology, calcium mobilization assay, and cellular thermal shift assay (CETSA) to determine whether these modes of activation can be decoupled. Lastly, smaller studies are covered like developing a way to delivery full-length and truncated protein using amphipols to artificial and live cells without the biological regulatory processes and the purification of the TRPM8 transmembrane domain (TMD). In the end, two successful methods were developed to study the polymodal activation of proteins.
ContributorsLuu, Dustin Dean (Author) / Van Horn, Wade D (Thesis advisor) / Redding, Kevin E (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2023
132788-Thumbnail Image.png
Description
Ion channels in the membranes of cells in the body allow for the creation of action potentials from external stimuli, allowing us to sense our surroundings. One particular channel, TRPM8, is a trans-membrane ion channel believed to be the primary cold sensor in humans. Despite this important biological role and

Ion channels in the membranes of cells in the body allow for the creation of action potentials from external stimuli, allowing us to sense our surroundings. One particular channel, TRPM8, is a trans-membrane ion channel believed to be the primary cold sensor in humans. Despite this important biological role and intense study of the channel, TRPM8 is not fully understood mechanistically and has not been accurately modeled. Existing models of TRPM8 fail to account for menthol activation of the channel. In this paper we re-implement an established whole cell model for TRPM8 with gating by both voltage and temperature. Using experimental data obtained from the Van Horn lab at Arizona State University, we refined the model to represent more accurately the dynamics of the human TRPM8 channel and incorporate the channel activation through menthol agonist binding. Our new model provides a large improvement over preexisting models, and serves as a basis for future incorporation of other channel activators of TRPM8 and for the modeling of other channels in the TRP family.
ContributorsAckerman, David (Author) / Crook, Sharon (Thesis director) / Van Horn, Wade (Committee member) / School of Earth and Space Exploration (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05