Matching Items (2)
Filtering by

Clear all filters

Description

Lightning in the atmosphere of Venus is either ubiquitous, rare, or non-existent, depending on how one interprets diverse observations. Quantifying if, when, or where lightning occurs would provide novel information about Venus’s atmospheric dynamics and chemistry. Lightning is also a potential risk to future missions, which could float in the

Lightning in the atmosphere of Venus is either ubiquitous, rare, or non-existent, depending on how one interprets diverse observations. Quantifying if, when, or where lightning occurs would provide novel information about Venus’s atmospheric dynamics and chemistry. Lightning is also a potential risk to future missions, which could float in the cloud layers (~50–70 km above the surface) for up to an Earth-year. For decades, spacecraft and ground-based telescopes have searched for lightning at Venus, using many instruments including magnetometers, radios, and optical cameras. Two surveys (from the Akatsuki orbiter and the 61-inch telescope on Mt. Bigelow, Arizona) observed several optical flashes that are often attributed to lightning. We expect that lightning at Venus is bright near 777 nm (the unresolved triplet emission lines of excited atomic oxygen) due to the high abundance of oxygen as carbon dioxide. However, meteor fireballs at Venus are probably bright at the same wavelength for the same reason. Here we derive power laws that quantify the rate and brightness of optical flashes from meteor fireballs at Venus. We calculated that meteor fireballs are statistically likely to cause bright optical flashes at rates that are consistent with published observations. Small meteors burn up at altitudes of ~100 km, roughly twice as high above the surface as the clouds. Therefore, we conclude that there is no concrete evidence that lightning strikes would be a hazard to missions that pass through or dwell within the clouds of Venus.

ContributorsBlaske, Claire (Author) / O'Rourke, Joseph (Thesis director) / Desch, Steve (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-05
Description
Jupiter’s moon Io is tidally locked with Jupiter and falls in a 4:2:1 orbital resonance with Europa and Ganymede, driving extreme tidal heating that makes it the most volcanically active body in the solar system. Io possesses a metallic core, as does its Galilean sibling Ganymede, yet, unlike Ganymede, Io lacks

Jupiter’s moon Io is tidally locked with Jupiter and falls in a 4:2:1 orbital resonance with Europa and Ganymede, driving extreme tidal heating that makes it the most volcanically active body in the solar system. Io possesses a metallic core, as does its Galilean sibling Ganymede, yet, unlike Ganymede, Io lacks a magnetic field. Here, I investigated the potential size, composition, and cooling rate of Io’s core to help determine why Io lacks a strong dynamo. First, I used mineral physics equations to determine that the radius of the core should be between ~650 km to 950 km for a composition ranging from pure Fe to a eutectic Fe-FeS alloy. Cosmochemical constraints from meteoritic analogues yield complementary constraints on the abundance of sulfur in the metallic core (~2.67–28.6 wt%). The mantle could be either fully or partially molten. I found that the scenario of a global magma ocean creates temperatures at the base of the mantle that are possibly too hot for core convection, but that a magma sponge regime could create core-mantle boundary temperatures cooler than the melting point of pure Fe, which could promote core convection. Therefore, I conclude that Io lacks a strong dynamo likely because it has a magma ocean with temperatures too high for convection. However, the possibility that Io’s mantle is a magma sponge suggests the importance for future missions to investigate the state of Io’s magnetic field.
ContributorsLunetto, Sarah (Author) / O'Rourke, Joseph (Thesis director) / Walker, Sara (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2024-05