Matching Items (6)
Filtering by

Clear all filters

132804-Thumbnail Image.png
Description
A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of

A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of year (winter and spring; Harrison et al., 2009; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017), suggesting that surficial frosts that form seasonally and diurnally might play a key role in this present-day activity. Frost formation is highly dependent on two key factors: (1) surface temperature and (2) the atmospheric partial pressure of the condensable gas (Kieffer, 1968). The Martian atmosphere is primarily composed of CO2and CO2 frost formation is not diffusion-limited (unlike H2O). Hence, for temperatures less than the local frost point of CO2, (~ 148 K at a surface pressure of 610 Pa) frost is always present (Piqueux et al., 2016). Typically, these frosts are dominated volumetrically by CO2, although small amounts of H2O frosts are also present, and typically precede CO2 frost deposition (due to water’s higher condensation temperature (Schorghofer and Edgett, 2006)). Here we use the Thermal Emission Imaging System (THEMIS) and the Thermal Emission Spectrometer (TES) onboard Mars Odyssey and Mars Global Surveyor, respectively, to explore the global spatial and temporal variation of temperatures conducive to CO2 and H2O frost formation on Mars, and assess their distribution with gully landforms. CO2 frost temperatures are observed at all latitudes and are strongly correlated with dusty, low thermal inertia regions near the equator. Modeling results suggest that frost formation is restricted to the surface due to near-surface radiative effects. About 49 % of all gullies lie within THEMIS frost framelets. In terms of active gullies, 54 % of active gullies lie within THEMIS framelets, with 14.3% in the north and 54% in the south.
Relatively small amounts of H2O frost (~ 10–100 μm) are also likely to form diurnally and seasonally. The global H2O frost point distribution follows water vapor column abundance closely, with a weak correlation with local surface pressure. There is a strong hemispherical dependence on the frost point temperature—with the northern hemisphere having a higher frost point (in general) than the southern hemisphere—likely due to elevation differences. Unlike the distribution of CO2 frost temperatures, there is little to no correlation with surface thermophysical properties (thermal inertia, albedo, etc.). Modeling suggests H2O frosts can briefly attain melting point temperatures for a few hours if present under thin layers of dust, and can perhaps play a role in present-day equatorial mass-wasting events (eg. McEwen et al., 2018).
Based on seasonal constraints on gully activity timing, preliminary field studies, frost presence from visible imagery, spectral data and thermal data (this work), it is likely that most present-day activity can be explained by frosts (primarily CO2, and possibly H2O). We predict that the conditions necessary for significant present-day activity include formation of sufficient amounts of frost (> ~20 cm/year) within loose, unconsolidated sediments (I < ~ 350) on available slopes. However, whether or not present-day gully activity is representative of gully formation as a whole is still open to debate, and the details on CO2 frost-induced gully formation mechanisms remain unresolved.
ContributorsKhuller, Aditya Rai (Author) / Christensen, Philip (Thesis director) / Harrison, Tanya (Committee member) / Diniega, Serina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132747-Thumbnail Image.png
Description
This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature

This project focuses on using Neutral Gas and Ion Mass Spectrometer (NGIMS) density data for carbon dioxide, oxygen, carbon monoxide, and nitrogen during deep dip campaigns 5, 6, and 8. Density profiles obtained from NGIMS were plotted against simulated density profiles from the Mars Global Ionosphere-Thermosphere Model (MGITM). Averaged temperature profiles were also plotted for the three deep dip campaigns, using NGIMS data and MGITM output. MGITM was also used as a tool to uncover potential heat balance terms needed to reproduce the mean density and temperature profiles measured by NGIMS.

This method of using NGIMS data as a validation tool for MGITM simulations has been tested previously using dayside data from deep dip campaigns 2 and 8. In those cases, MGITM was able to accurately reproduce the measured density and temperature profiles; however, in the deep dip 5 and 6 campaigns, the results are not quite the same, due to the highly variable nature of the nightside thermosphere. MGITM was able to fairly accurately reproduce the density and temperature profiles for deep dip 5, but the deep dip 6 model output showed unexpected significant variation. The deep dip 6 results reveal possible changes to be made to MGITM to more accurately reflect the observed structure of the nighttime thermosphere. In particular, upgrading the model to incorporate a suitable gravity wave parameterization should better capture the role of global winds in maintaining the nighttime thermospheric structure.

This project reveals that there still exist many unknowns about the structure and dynamics of the night side of the Martian atmosphere, as well as significant diurnal variations in density. Further study is needed to uncover these unknowns and their role in atmospheric mass loss.
ContributorsRobinson, Jenna (Author) / Desch, Steven (Thesis director) / Hervig, Richard (Committee member) / School of Earth and Space Exploration (Contributor) / School for the Future of Innovation in Society (Contributor) / School of International Letters and Cultures (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description

Lightning in the atmosphere of Venus is either ubiquitous, rare, or non-existent, depending on how one interprets diverse observations. Quantifying if, when, or where lightning occurs would provide novel information about Venus’s atmospheric dynamics and chemistry. Lightning is also a potential risk to future missions, which could float in the

Lightning in the atmosphere of Venus is either ubiquitous, rare, or non-existent, depending on how one interprets diverse observations. Quantifying if, when, or where lightning occurs would provide novel information about Venus’s atmospheric dynamics and chemistry. Lightning is also a potential risk to future missions, which could float in the cloud layers (~50–70 km above the surface) for up to an Earth-year. For decades, spacecraft and ground-based telescopes have searched for lightning at Venus, using many instruments including magnetometers, radios, and optical cameras. Two surveys (from the Akatsuki orbiter and the 61-inch telescope on Mt. Bigelow, Arizona) observed several optical flashes that are often attributed to lightning. We expect that lightning at Venus is bright near 777 nm (the unresolved triplet emission lines of excited atomic oxygen) due to the high abundance of oxygen as carbon dioxide. However, meteor fireballs at Venus are probably bright at the same wavelength for the same reason. Here we derive power laws that quantify the rate and brightness of optical flashes from meteor fireballs at Venus. We calculated that meteor fireballs are statistically likely to cause bright optical flashes at rates that are consistent with published observations. Small meteors burn up at altitudes of ~100 km, roughly twice as high above the surface as the clouds. Therefore, we conclude that there is no concrete evidence that lightning strikes would be a hazard to missions that pass through or dwell within the clouds of Venus.

ContributorsBlaske, Claire (Author) / O'Rourke, Joseph (Thesis director) / Desch, Steve (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-05
156391-Thumbnail Image.png
Description
Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At the meter-scale and below, planetary regolith conducts heat at a rate that depends on the physical properties of the regolith

Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At the meter-scale and below, planetary regolith conducts heat at a rate that depends on the physical properties of the regolith particles, such as particle size, sorting, composition, and shape. Radiometric temperature measurements thus provide the means to determine regolith properties and rock abundance from afar. However, heat conduction through a matrix of irregular particles is a complicated physical system that is strongly influenced by temperature and atmospheric gas pressure. A series of new regolith thermal conductivity experiments were conducted under realistic planetary surface pressure and temperature conditions. A new model is put forth to describe the radiative, solid, and gaseous conduction terms of regolith on Earth, Mars, and airless bodies. These results will be used to infer particle size distribution from temperature measurements of the primitive asteroid Bennu to aid in OSIRIS-REx sampling site selection. Moving up in scale, fluvial processes are extremely influential in shaping Earth's surface and likely played an influential role on ancient Mars. Amphitheater-headed canyons are found on both planets, but conditions necessary for their development have been debated for many years. A spatial analysis of canyon form distribution with respect to local stratigraphy at the Escalante River and on Tarantula Mesa, Utah, indicates that canyon distribution is most closely related to variations in local rock strata, rather than groundwater spring intensity or climate variations. This implies that amphitheater-headed canyons are not simple markers of groundwater seepage erosion or megaflooding. Finally, at the largest scale, volcanism has significantly altered the surface characteristics of Earth and Mars. A field campaign was conducted in Hawaii to investigate the December 1974 Kilauea lava flow, where it was found that lava coils formed in an analogous manner to those found in Athabasca Valles, Mars. The location and size of the coils may be used as indicators of local effusion rate, viscosity, and crustal thickness.
ContributorsRyan, Andrew J (Author) / Christensen, Philip R. (Thesis advisor) / Bell, James F. (Committee member) / Whipple, Kelin X (Committee member) / Ruff, Steven W (Committee member) / Asphaug, Erik I (Committee member) / Arizona State University (Publisher)
Created2018
157694-Thumbnail Image.png
Description
There are more than 20 active missions exploring planets and small bodies beyond Earth in our solar system today. Many more have completed their journeys or will soon begin. Each spacecraft has a suite of instruments and sensors that provide a treasure trove of data that scientists use to advance

There are more than 20 active missions exploring planets and small bodies beyond Earth in our solar system today. Many more have completed their journeys or will soon begin. Each spacecraft has a suite of instruments and sensors that provide a treasure trove of data that scientists use to advance our understanding of the past, present, and future of the solar system and universe. As more missions come online and the volume of data increases, it becomes more difficult for scientists to analyze these complex data at the desired pace. There is a need for systems that can rapidly and intelligently extract information from planetary instrument datasets and prioritize the most promising, novel, or relevant observations for scientific analysis. Machine learning methods can serve this need in a variety of ways: by uncovering patterns or features of interest in large, complex datasets that are difficult for humans to analyze; by inspiring new hypotheses based on structure and patterns revealed in data; or by automating tedious or time-consuming tasks. In this dissertation, I present machine learning solutions to enhance the tactical planning process for the Mars Science Laboratory Curiosity rover and future tactically-planned missions, as well as the science analysis process for archived and ongoing orbital imaging investigations such as the High Resolution Imaging Science Experiment (HiRISE) at Mars. These include detecting novel geology in multispectral images and active nuclear spectroscopy data, analyzing the intrinsic variability in active nuclear spectroscopy data with respect to elemental geochemistry, automating tedious image review processes, and monitoring changes in surface features such as impact craters in orbital remote sensing images. Collectively, this dissertation shows how machine learning can be a powerful tool for facilitating scientific discovery during active exploration missions and in retrospective analysis of archived data.
ContributorsKerner, Hannah Rae (Author) / Bell, James F. (Thesis advisor) / Ben Amor, Heni (Thesis advisor) / Wagstaff, Kiri L (Committee member) / Hardgrove, Craig J (Committee member) / Shirzaei, Manoochehr (Committee member) / Arizona State University (Publisher)
Created2019
Description
Jupiter’s moon Io is tidally locked with Jupiter and falls in a 4:2:1 orbital resonance with Europa and Ganymede, driving extreme tidal heating that makes it the most volcanically active body in the solar system. Io possesses a metallic core, as does its Galilean sibling Ganymede, yet, unlike Ganymede, Io lacks

Jupiter’s moon Io is tidally locked with Jupiter and falls in a 4:2:1 orbital resonance with Europa and Ganymede, driving extreme tidal heating that makes it the most volcanically active body in the solar system. Io possesses a metallic core, as does its Galilean sibling Ganymede, yet, unlike Ganymede, Io lacks a magnetic field. Here, I investigated the potential size, composition, and cooling rate of Io’s core to help determine why Io lacks a strong dynamo. First, I used mineral physics equations to determine that the radius of the core should be between ~650 km to 950 km for a composition ranging from pure Fe to a eutectic Fe-FeS alloy. Cosmochemical constraints from meteoritic analogues yield complementary constraints on the abundance of sulfur in the metallic core (~2.67–28.6 wt%). The mantle could be either fully or partially molten. I found that the scenario of a global magma ocean creates temperatures at the base of the mantle that are possibly too hot for core convection, but that a magma sponge regime could create core-mantle boundary temperatures cooler than the melting point of pure Fe, which could promote core convection. Therefore, I conclude that Io lacks a strong dynamo likely because it has a magma ocean with temperatures too high for convection. However, the possibility that Io’s mantle is a magma sponge suggests the importance for future missions to investigate the state of Io’s magnetic field.
ContributorsLunetto, Sarah (Author) / O'Rourke, Joseph (Thesis director) / Walker, Sara (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2024-05