Matching Items (2)
Filtering by

Clear all filters

156391-Thumbnail Image.png
Description
Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At the meter-scale and below, planetary regolith conducts heat at a rate that depends on the physical properties of the regolith

Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At the meter-scale and below, planetary regolith conducts heat at a rate that depends on the physical properties of the regolith particles, such as particle size, sorting, composition, and shape. Radiometric temperature measurements thus provide the means to determine regolith properties and rock abundance from afar. However, heat conduction through a matrix of irregular particles is a complicated physical system that is strongly influenced by temperature and atmospheric gas pressure. A series of new regolith thermal conductivity experiments were conducted under realistic planetary surface pressure and temperature conditions. A new model is put forth to describe the radiative, solid, and gaseous conduction terms of regolith on Earth, Mars, and airless bodies. These results will be used to infer particle size distribution from temperature measurements of the primitive asteroid Bennu to aid in OSIRIS-REx sampling site selection. Moving up in scale, fluvial processes are extremely influential in shaping Earth's surface and likely played an influential role on ancient Mars. Amphitheater-headed canyons are found on both planets, but conditions necessary for their development have been debated for many years. A spatial analysis of canyon form distribution with respect to local stratigraphy at the Escalante River and on Tarantula Mesa, Utah, indicates that canyon distribution is most closely related to variations in local rock strata, rather than groundwater spring intensity or climate variations. This implies that amphitheater-headed canyons are not simple markers of groundwater seepage erosion or megaflooding. Finally, at the largest scale, volcanism has significantly altered the surface characteristics of Earth and Mars. A field campaign was conducted in Hawaii to investigate the December 1974 Kilauea lava flow, where it was found that lava coils formed in an analogous manner to those found in Athabasca Valles, Mars. The location and size of the coils may be used as indicators of local effusion rate, viscosity, and crustal thickness.
ContributorsRyan, Andrew J (Author) / Christensen, Philip R. (Thesis advisor) / Bell, James F. (Committee member) / Whipple, Kelin X (Committee member) / Ruff, Steven W (Committee member) / Asphaug, Erik I (Committee member) / Arizona State University (Publisher)
Created2018
158560-Thumbnail Image.png
Description
Meteorites and their components can be used to unravel the history of the early Solar System. Carbonaceous chondrites are meteorites that originated from undifferentiated parent bodies that formed within a few million years of the beginning of the Solar System. These meteorites contain calcium-aluminum-rich inclusions (CAIs), which are the oldest

Meteorites and their components can be used to unravel the history of the early Solar System. Carbonaceous chondrites are meteorites that originated from undifferentiated parent bodies that formed within a few million years of the beginning of the Solar System. These meteorites contain calcium-aluminum-rich inclusions (CAIs), which are the oldest dated solids in the Solar System at ~4.567 billion years old and thus preserve a record of the earliest stage of Solar System formation. The isotopic compositions of CAIs and bulk carbonaceous chondrites can be used to identify the sources of material inherited by the protoplanetary disk, assess the degree of mixing in the disk, and evaluate sample origins and potential genetic relationships between parent bodies. In particular, mass-independent Cr and Ti isotopic compositions have proven to be especially useful for these purposes.

In this work, I first developed new methods for the chemical separation of Cr and Ti, improving the reliability of existing methods to ensure consistent yields and accurate isotopic measurements. I then measured the Cr and Ti isotopic compositions of CAIs from CV and CK chondrites to determine the extent of isotopic heterogeneity in the CAI-forming region and assess the role of CAIs in the preservation of planetary-scale isotopic anomalies. My results show that all measured CAIs originated from a common isotopic reservoir that incorporated material from at least three distinct nucleosynthetic sources and preserved limited isotopic heterogeneity. These results also suggest that planetary-scale isotopic anomalies cannot be attributed solely to the transport of CAIs from one part of the solar nebula to another. I finally measured the Cr and Ti isotopic compositions of bulk CM, CO, and ungrouped chondrites to evaluate the relationship between CM and CO chondrites, which have been suggested to originate from either distinct but related parent bodies or a common compositionally heterogeneous parent body. My results suggest that CM, CO, and related ungrouped chondrites originated from distinct parent bodies that formed from similar precursor materials in nearby formation regions. These results may have implications for asteroid samples returned by the OSIRIS-REx and Hayabusa2 missions.
ContributorsTorrano, Zachary (Author) / Wadhwa, Meenakshi (Thesis advisor) / Anbar, Ariel D (Committee member) / Schrader, Devin L (Committee member) / Williams, David A. (Committee member) / Young, Patrick A (Committee member) / Arizona State University (Publisher)
Created2020