Matching Items (2)
Filtering by

Clear all filters

Description

Lightning in the atmosphere of Venus is either ubiquitous, rare, or non-existent, depending on how one interprets diverse observations. Quantifying if, when, or where lightning occurs would provide novel information about Venus’s atmospheric dynamics and chemistry. Lightning is also a potential risk to future missions, which could float in the

Lightning in the atmosphere of Venus is either ubiquitous, rare, or non-existent, depending on how one interprets diverse observations. Quantifying if, when, or where lightning occurs would provide novel information about Venus’s atmospheric dynamics and chemistry. Lightning is also a potential risk to future missions, which could float in the cloud layers (~50–70 km above the surface) for up to an Earth-year. For decades, spacecraft and ground-based telescopes have searched for lightning at Venus, using many instruments including magnetometers, radios, and optical cameras. Two surveys (from the Akatsuki orbiter and the 61-inch telescope on Mt. Bigelow, Arizona) observed several optical flashes that are often attributed to lightning. We expect that lightning at Venus is bright near 777 nm (the unresolved triplet emission lines of excited atomic oxygen) due to the high abundance of oxygen as carbon dioxide. However, meteor fireballs at Venus are probably bright at the same wavelength for the same reason. Here we derive power laws that quantify the rate and brightness of optical flashes from meteor fireballs at Venus. We calculated that meteor fireballs are statistically likely to cause bright optical flashes at rates that are consistent with published observations. Small meteors burn up at altitudes of ~100 km, roughly twice as high above the surface as the clouds. Therefore, we conclude that there is no concrete evidence that lightning strikes would be a hazard to missions that pass through or dwell within the clouds of Venus.

ContributorsBlaske, Claire (Author) / O'Rourke, Joseph (Thesis director) / Desch, Steve (Committee member) / Barrett, The Honors College (Contributor) / School of Earth and Space Exploration (Contributor)
Created2023-05
158229-Thumbnail Image.png
Description
During the early Solar System many physiochemical processes were taking place that would shape the formation and evolution of rocky bodies. Growth of these rocky objects was rapid, with some growing to sizes of 10s – 1000s km (“planetesimals”) in the first few million years. Because these objects formed early,

During the early Solar System many physiochemical processes were taking place that would shape the formation and evolution of rocky bodies. Growth of these rocky objects was rapid, with some growing to sizes of 10s – 1000s km (“planetesimals”) in the first few million years. Because these objects formed early, they contained sufficient 26Al (an isotope of Al with a short half-life of ~705,000 yrs) to heat the interiors to melting temperatures, resulting in the formation of the first igneous rocks in nascent Solar System. Depending on the size and time of accretion, some bodies experienced high degrees of melting (with some having global magma oceans) while others experienced lower degrees of partial melting, and yet others did not experience any melting at all. These varying degrees of heating and melting processes on early-formed planetesimals produced a variety of achondritic meteorite types. These achondrites have bulk compositions ranging from ultramafic to basaltic, with some rare types having more highly “evolved” (i.e., high-SiO2) compositions. Determining the detailed chronology of their formation with fine time resolution is key for understanding the earliest stages of planet formation, and there are high resolution chronometers that are ideally suited for this application. Three such chronometers (i.e., the 26Al-26Mg, 53Mn-53Cr, and 207Pb-206Pb chronometers) are the focus of this work. Based on investigations of these chronometers in several achondritic meteorites, the implications for the formation and evolution of planetesimals in the early Solar System will be discussed.
ContributorsDunlap, Daniel Robert (Author) / Wadhwa, Meenakshi (Thesis advisor) / Desch, Steve (Committee member) / Hodges, Kip (Committee member) / Sharp, Tom (Committee member) / Elkins-Tanton, Linda T. (Committee member) / Arizona State University (Publisher)
Created2020