Matching Items (2)
Filtering by

Clear all filters

132804-Thumbnail Image.png
Description
A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of

A wide range of types of activity in mid-latitude Martian gullies has been observed over the last decade (Malin et al., 2006; Harrison et al., 2009, 2015; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017) with some activity constrained temporally to occur in the coldest times of year (winter and spring; Harrison et al., 2009; Diniega et al., 2010; Dundas et al., 2010, 2012, 2015, 2017), suggesting that surficial frosts that form seasonally and diurnally might play a key role in this present-day activity. Frost formation is highly dependent on two key factors: (1) surface temperature and (2) the atmospheric partial pressure of the condensable gas (Kieffer, 1968). The Martian atmosphere is primarily composed of CO2and CO2 frost formation is not diffusion-limited (unlike H2O). Hence, for temperatures less than the local frost point of CO2, (~ 148 K at a surface pressure of 610 Pa) frost is always present (Piqueux et al., 2016). Typically, these frosts are dominated volumetrically by CO2, although small amounts of H2O frosts are also present, and typically precede CO2 frost deposition (due to water’s higher condensation temperature (Schorghofer and Edgett, 2006)). Here we use the Thermal Emission Imaging System (THEMIS) and the Thermal Emission Spectrometer (TES) onboard Mars Odyssey and Mars Global Surveyor, respectively, to explore the global spatial and temporal variation of temperatures conducive to CO2 and H2O frost formation on Mars, and assess their distribution with gully landforms. CO2 frost temperatures are observed at all latitudes and are strongly correlated with dusty, low thermal inertia regions near the equator. Modeling results suggest that frost formation is restricted to the surface due to near-surface radiative effects. About 49 % of all gullies lie within THEMIS frost framelets. In terms of active gullies, 54 % of active gullies lie within THEMIS framelets, with 14.3% in the north and 54% in the south.
Relatively small amounts of H2O frost (~ 10–100 μm) are also likely to form diurnally and seasonally. The global H2O frost point distribution follows water vapor column abundance closely, with a weak correlation with local surface pressure. There is a strong hemispherical dependence on the frost point temperature—with the northern hemisphere having a higher frost point (in general) than the southern hemisphere—likely due to elevation differences. Unlike the distribution of CO2 frost temperatures, there is little to no correlation with surface thermophysical properties (thermal inertia, albedo, etc.). Modeling suggests H2O frosts can briefly attain melting point temperatures for a few hours if present under thin layers of dust, and can perhaps play a role in present-day equatorial mass-wasting events (eg. McEwen et al., 2018).
Based on seasonal constraints on gully activity timing, preliminary field studies, frost presence from visible imagery, spectral data and thermal data (this work), it is likely that most present-day activity can be explained by frosts (primarily CO2, and possibly H2O). We predict that the conditions necessary for significant present-day activity include formation of sufficient amounts of frost (> ~20 cm/year) within loose, unconsolidated sediments (I < ~ 350) on available slopes. However, whether or not present-day gully activity is representative of gully formation as a whole is still open to debate, and the details on CO2 frost-induced gully formation mechanisms remain unresolved.
ContributorsKhuller, Aditya Rai (Author) / Christensen, Philip (Thesis director) / Harrison, Tanya (Committee member) / Diniega, Serina (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171512-Thumbnail Image.png
Description
Mountain landscapes reflect competition between tectonic processes acting to build topography and erosive processes acting to wear it down. In temperate mountain landscapes, bedrock rivers are the primary erosional agent, setting both the pace of landscape evolution and form of the surrounding topography. Theory predicts that river steepness is sensitive

Mountain landscapes reflect competition between tectonic processes acting to build topography and erosive processes acting to wear it down. In temperate mountain landscapes, bedrock rivers are the primary erosional agent, setting both the pace of landscape evolution and form of the surrounding topography. Theory predicts that river steepness is sensitive to climatic, tectonic, and lithologic factors, which dictate the rates and mechanics of erosional processes. Thus, encoded into topography is an archive of information about forces driving landscape evolution. Decoding this archive, however, is fraught and climate presents a particularly challenging conundrum: despite decades of research describing theoretically how climate should affect topography, unambiguous natural examples from tectonically active landscapes where variations in climate demonstrably influence topography are elusive. In this dissertation, I first present a theoretical framework describing how the spatially varied nature of orographic rainfall patterns, which are ubiquitous features of mountain climates, complicate expectations about how climate should influence river steepness and erosion. I then apply some of these ideas to the northern-central Andes. By analyzing river profiles spanning more than 1500 km across Peru and Bolivia, I show that the regional orographic rainfall pattern this landscape experiences systematically influences fluvial erosional efficiency and thus topography. I also show how common simplifying assumptions built into conventional topographic analysis techniques may introduce biases that undermine detection of climatic signatures in landscapes where climate, tectonics, and lithology all covary – a common condition in mountain landscapes where these techniques are often used. I continue by coupling this analysis with published erosion rates and a new dataset of 25 cosmogenic 10Be catchment average erosion rates. Once the influence of climate is accounted for, functional relationships emerge among channel steepness, erosion rate, and lithology. I then use these functional relationships to produce a calibrated erosion rate map that spans over 300 km of the southern Peruvian Andes. These results demonstrate that accounting for the effects of climate significantly enhances the ability to decode channel steepness patterns. Along with this comes the potential to better understand rates and patterns of tectonic processes, and identify seismic hazards associated with tectonic activity using topography.
ContributorsLeonard, Joel Scott (Author) / Whipple, Kelin (Thesis advisor) / Arrowsmith, Ramon (Committee member) / Christensen, Philip (Committee member) / Forte, Adam (Committee member) / Heimsath, Arjun (Committee member) / Hodges, Kip (Committee member) / Arizona State University (Publisher)
Created2022