Matching Items (2)
150086-Thumbnail Image.png
Description
Detecting anatomical structures, such as the carina, the pulmonary trunk and the aortic arch, is an important step in designing a CAD system of detection Pulmonary Embolism. The presented CAD system gets rid of the high-level prior defined knowledge to become a system which can easily extend to detect other

Detecting anatomical structures, such as the carina, the pulmonary trunk and the aortic arch, is an important step in designing a CAD system of detection Pulmonary Embolism. The presented CAD system gets rid of the high-level prior defined knowledge to become a system which can easily extend to detect other anatomic structures. The system is based on a machine learning algorithm --- AdaBoost and a general feature --- Haar. This study emphasizes on off-line and on-line AdaBoost learning. And in on-line AdaBoost, the thesis further deals with extremely imbalanced condition. The thesis first reviews several knowledge-based detection methods, which are relied on human being's understanding of the relationship between anatomic structures. Then the thesis introduces a classic off-line AdaBoost learning. The thesis applies different cascading scheme, namely multi-exit cascading scheme. The comparison between the two methods will be provided and discussed. Both of the off-line AdaBoost methods have problems in memory usage and time consuming. Off-line AdaBoost methods need to store all the training samples and the dataset need to be set before training. The dataset cannot be enlarged dynamically. Different training dataset requires retraining the whole process. The retraining is very time consuming and even not realistic. To deal with the shortcomings of off-line learning, the study exploited on-line AdaBoost learning approach. The thesis proposed a novel pool based on-line method with Kalman filters and histogram to better represent the distribution of the samples' weight. Analysis of the performance, the stability and the computational complexity will be provided in the thesis. Furthermore, the original on-line AdaBoost performs badly in imbalanced conditions, which occur frequently in medical image processing. In image dataset, positive samples are limited and negative samples are countless. A novel Self-Adaptive Asymmetric On-line Boosting method is presented. The method utilized a new asymmetric loss criterion with self-adaptability according to the ratio of exposed positive and negative samples and it has an advanced rule to update sample's importance weight taking account of both classification result and sample's label. Compared to traditional on-line AdaBoost Learning method, the new method can achieve far more accuracy in imbalanced conditions.
ContributorsWu, Hong (Author) / Liang, Jianming (Thesis advisor) / Farin, Gerald (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
132648-Thumbnail Image.png
Description
Background: Pulmonary embolism is a deadly condition that is often diagnosed using a technique known as computed tomography pulmonary angiography (CTPA). CTPA reports are free-text, narrative-style forms of documentation conferring radiologist findings—both primary (regarding pulmonary embolism) and incidental. This project seeks to combine simple natural language processing (NLP) techniques, such

Background: Pulmonary embolism is a deadly condition that is often diagnosed using a technique known as computed tomography pulmonary angiography (CTPA). CTPA reports are free-text, narrative-style forms of documentation conferring radiologist findings—both primary (regarding pulmonary embolism) and incidental. This project seeks to combine simple natural language processing (NLP) techniques, such as regular expressions and rules, to build upon and
further process output from a machine learning based named entity recognition (NER) tool for the purposes of (1) linking references to radiological images with the corresponding clinical findings and (2) extracting primary and incidental findings.

Methods: The project’s system utilized a regular expression to extract image references. All CTPA reports were first processed with NER software to obtain the text and spans of clinical findings. A heuristic was used to determine the appropriate clinical finding that should be linked with a particular image reference. Another regular expression was used to extract primary findings from NER output; the remaining findings were considered incidental. Performance was
assessed against a gold standard, which was based upon a manually annotated version of the CTPA reports used in this project.

Results: Extraction of image references achieved a 100% accuracy. Linkages between these references and exact gold standard spans of the clinical findings achieved a precision of 0.24, a recall of 0.22, and an F1 score of 0.23. Linkages with partial spans of clinical findings as determined by the gold standard achieved a precision of 0.71, a recall of 0.67, and an F1 score of 0.69. Primary and incidental finding extraction achieved a precision of 0.67, a recall of 0.80, and
an F1 score of 0.73.

Discussion: Various elements reduced system performance such as the difficulty of exactly matching the spans of clinical findings from NER output with those found in the gold standard. The heuristic linking clinical findings and image references was especially sensitive to NER false positives and false negatives due to its assumption that the appropriate clinical finding was that which was immediately prior to the image reference. Although the system did not perform as well as hoped, lessons were learned such as the need for clear research methodology and proper gold standard creation; without a proper gold standard, problem scope and system performance cannot be properly assessed. Improvements to the system include creating a more robust heuristic, sifting NER false positives, and training the NER tool used on a dataset of CTPA reports.
ContributorsBorlongan, Matthew Bilog (Author) / Devarakonda, Murthy (Thesis director) / Murcko, Anita (Committee member) / College of Health Solutions (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05