Matching Items (3)
Filtering by

Clear all filters

132635-Thumbnail Image.png
Description
The human gastrin receptor (CCKBR or CCK2R) is a class A G protein-coupled receptor (GPCR) found throughout the central nervous system, stomach, and a variety of cancer cells. CCK2R is implicated in the regulation of biological processes, including anxiety, satiety, arousal, analgesia, psychosis, and cancer cell growth and proliferation. While

The human gastrin receptor (CCKBR or CCK2R) is a class A G protein-coupled receptor (GPCR) found throughout the central nervous system, stomach, and a variety of cancer cells. CCK2R is implicated in the regulation of biological processes, including anxiety, satiety, arousal, analgesia, psychosis, and cancer cell growth and proliferation. While CCK2R is an attractive drug target, few drugs have managed to effectively target the receptor, and none have been brought to market. Contributory to this is the lack of high-resolution crystal structure capable of elucidating the binding regions of CCK2R to streamlining drug screening. While GPCRs are not amenable to traditional structural analysis methodologies, the advent of lipidic cubic phase (LCP) crystallography and serial femtosecond crystallography (SFX) at X-ray free electron lasers (XFELs), has extended the applicability of X-ray crystallography to these integral membrane proteins. LCP-SFX depends on optimizing the protein of interest for extraction, purification, and crystallization. Here we report our findings regarding the optimization of CCK2R suggesting the synergistic relationship between N-terminal truncations and the insertion of a fusion protein along ICL3, in addition to a 30-residue truncation of the C-terminus. Samples were expressed in Sf9 insect cells using a Bac-to-Bac baculovirus expression system, extracted using n-Dodecyl-β-D-Maltoside detergent, and purified via TALON immobilized metal-ion affinity chromatography. The constructs were characterized via SDS-PAGE, Western blot, and size exclusion chromatography. These findings demonstrate the improvements to CCK2R’s crystallographic amenability upon these modifications, however significant improvements must be made prior to crystallization trials. Future work will involve screening C-terminal truncations, thermostabilizing point mutations, and co-crystallizing ligands. Ideally this investigation will serve as a model for future CCK2R structural analysis and contribute to a heightened interest in CCK2R as a therapeutic target.
ContributorsStevens, Alexander Wade (Author) / Liu, Wei (Thesis director) / Chiu, Po-Lin (Committee member) / Mills, Jeremy (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Molecular Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
135076-Thumbnail Image.png
Description
The dopamine 2 receptor (D2R) is a Class A GPCR which is essential for signaling in the nervous system, and has been implicated in numerous illnesses. While there are over 50 currently approved drugs which act on D2R, the structure has never been determined in detail. Although crystallography has historically

The dopamine 2 receptor (D2R) is a Class A GPCR which is essential for signaling in the nervous system, and has been implicated in numerous illnesses. While there are over 50 currently approved drugs which act on D2R, the structure has never been determined in detail. Although crystallography has historically been difficult with GPCRs, in recent years many structures have been solved using lipidic cubic phase (LCP) crystallization techniques. Sample preparation for LCP crystallization typically requires optimization of genetic constructs, recombinant expression, and purification techniques in order to produce a sample with sufficient stability and homogeneity. This study compares several genetic constructs utilizing different promoters, fusion proteins, fusion positions, and truncations in order to determine a high quality construct for LCP crystallization of
D2R. All constructs were expressed using the Bac-to-bac baculovirus expression system, then extracted with n-Dodecyl-β-D-Maltoside (DDM) and purified using metal affinity chromatography. Samples were then tested for quantity, purity, and homogeneity using SDS-PAGE, western blot, and size-exclusion chromatography. High quality samples were chosen based on insect cell expression levels, purification yield, and stability estimated by the levels of homomeric protein relative to aggregated protein. A final construct was chosen with which to continue future studies in optimization of thermal stability and crystallization conditions. Future work on this project is required to produce a sample amenable to crystallization. Screening of ligands for co-crystallization,
thermostabilizing point mutations, and potentially optimization of extraction and purification techniques prior to crystallization trials. Solving the D2R structure will lead to an increased understanding of its signaling mechanism and the mechanisms of currently approved drugs, while also providing a basis for more effective structure-based drug design.
ContributorsErler, Maya Marie (Author) / Liu, Wei (Thesis director) / He, Ximin (Committee member) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
157795-Thumbnail Image.png
Description
Serial femtosecond crystallography (SFX) uses diffraction patterns from crystals delivered in a serial fashion to an X-Ray Free Electron Laser (XFEL) for structure determination. Typically, each diffraction pattern is a snapshot from a different crystal. SFX limits the effect of radiation damage and enables the use of nano/micro crystals for

Serial femtosecond crystallography (SFX) uses diffraction patterns from crystals delivered in a serial fashion to an X-Ray Free Electron Laser (XFEL) for structure determination. Typically, each diffraction pattern is a snapshot from a different crystal. SFX limits the effect of radiation damage and enables the use of nano/micro crystals for structure determination. However, analysis of SFX data is challenging since each snapshot is processed individually.

Many photosystem II (PSII) dataset have been collected at XFELs, several of which are time-resolved (containing both dark and laser illuminated frames). Comparison of light and dark datasets requires understanding systematic errors that can be introduced during data analysis. This dissertation describes data analysis of PSII datasets with a focus on the effect of parameters on later results. The influence of the subset of data used in the analysis is also examined and several criteria are screened for their utility in creating better subsets of data. Subsets are compared with Bragg data analysis and continuous diffuse scattering data analysis.

A new tool, DatView aids in the creation of subsets and visualization of statistics. DatView was developed to improve the loading speed to visualize statistics of large SFX datasets and simplify the creation of subsets based on the statistics. It combines the functionality of several existing visualization tools into a single interface, improving the exploratory power of the tool. In addition, it has comparison features that allow a pattern-by-pattern analysis of the effect of processing parameters. \emph{DatView} improves the efficiency of SFX data analysis by reducing loading time and providing novel visualization tools.
ContributorsStander, Natasha (Author) / Fromme, Petra (Thesis advisor) / Zatsepin, Nadia (Thesis advisor) / Kirian, Richard (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2019