Matching Items (3)
132624-Thumbnail Image.png
Description
Effectively modeling Alzheimer’s disease will lend to a more comprehensive
understanding of the disease pathology, more efficacious drug development and
regenerative medicine as a form of treatment. There are limitations with current
transgenic mouse models of Alzheimer’s disease and the study of post mortem brain tissue of Alzheimer’s diseases patients. Stem cell models

Effectively modeling Alzheimer’s disease will lend to a more comprehensive
understanding of the disease pathology, more efficacious drug development and
regenerative medicine as a form of treatment. There are limitations with current
transgenic mouse models of Alzheimer’s disease and the study of post mortem brain tissue of Alzheimer’s diseases patients. Stem cell models can overcome the lack of clinical relevance and impracticality associated with current models. Ideally, the use of stem cell models provides the foundation to study the biochemical and physiological aspects of Alzheimer’s disease, but at the cellular level. Moreover, the future of drug development and disease modeling can be improved by developing a reproducible and well-characterized model of AD that can be scaled up to meet requirements for basic and translational applications. Characterization and analysis of a heterogenic neuronal culture developed from induced pluripotent stem cells calls for the understanding of single cell identity and cell viability. A method to analyze RNA following intracellular sorting was developed in order to analyze single cell identity of a heterogenic population
of human induced pluripotent stem cells and neural progenitor cells. The population was intracellularly stained and sorted for Oct4. RNA was isolated and analyzed with qPCR, which demonstrated expected expression profiles for Oct4+ and Oct4- cells. In addition, a protocol to label cells with pO2 sensing nanoprobes was developed to assess cell viability. Non-destructive nanoprobe up-take by neural progenitor cells was assessed with fluorescent imaging and flow cytometry. Nanoprobe labeled neurons were cultured long-term and continued to fluoresce at day 28. The proof of concept experiments demonstrated will be further expanded upon and utilized in developing a more clinically relevant and cost-effective model of Alzheimer’s disease with downstream applications
in drug development and regenerative medicine.
ContributorsKnittel, Jacob James (Author) / Brafman, David (Thesis director) / Salvatore, Oddo (Committee member) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
193518-Thumbnail Image.png
Description
APOE encodes for a lipid transport protein and has three allelic variants-APOE ε2, ε3 and ε4 each of which differentially modulate the risk for Alzheimer’s disease (AD). The presence of the ε4 allele of APOE greatly increases AD risk compared to the presence of the more prevalent and risk neutral

APOE encodes for a lipid transport protein and has three allelic variants-APOE ε2, ε3 and ε4 each of which differentially modulate the risk for Alzheimer’s disease (AD). The presence of the ε4 allele of APOE greatly increases AD risk compared to the presence of the more prevalent and risk neutral ε3 allele. An imbalance in the generation and clearance of amyloid beta (Aβ) peptides has been hypothesized to play a key role in driving the disease. APOE4 impacts several AD-relevant cellular processes. However, it is unclear whether these effects represent a gain of toxic function or a loss of function, specifically as it relates to modulating amyloid beta (Aβ) levels. Here, a set of APOE knockout (KO) and APOE4 isogenic human induced pluripotent stem cells (hiPSCs) were generated from a parental APOE3 hiPSC line with a highly penetrant familial AD (fAD) mutation to investigate this with respect to Aβ secretion in neural cultures and Aβ uptake in monocultures of microglia-like cells (iMGLs). Conversion of APOE3 to E4 as well as functionally knocking APOE out from the APOE3 parental line, result in elevated Aβ levels in neural cultures, likely through multiple mechanisms including the altered processing of the precursor protein to Aβ called amyloid precursor protein (APP). In pure neuronal cultures, a shift in the processing of APP was observed with the Aβ-generating amyloidogenic pathway being favored in both APOE3 as well as APOE4 neurons compared to APOE KO neurons, with APOE4 neurons exhibiting a greater shift. In iMGLs derived from the isogenic hiPSC lines, expression of APOE, regardless of the isoform, lowered the uptake of Aβ. Overall, APOE4 modulates Aβ levels through distinct loss of protective and gain of function effects. Dissecting these effects would contribute towards a better understanding of the design of potential APOE-targeted therapeutics in the future.
ContributorsRajaram Srinivasan, Gayathri (Author) / Brafman, David (Thesis advisor) / Plaisier, Christopher (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Wang, Xiao (Committee member) / Arizona State University (Publisher)
Created2024
161295-Thumbnail Image.png
Description
Genome wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E (APOE) gene to be the most prominent risk factor for Alzheimer’s disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal

Genome wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E (APOE) gene to be the most prominent risk factor for Alzheimer’s disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. The hallmarks of AD pathology manifest in human neurons in the form of extracellular amyloid deposits and intracellular neurofibrillary tangles, whereas astrocytes are the primary source of the APOE protein in the brain. In this study, an isogenic human induced pluripotent stem cell (hiPSC)-based system is utilized to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 is mediated by cell autonomous and non-autonomous effects. In particular, it was demonstrated the reduction in Aβ and pathogenic β-C-terminal fragments (APP-βCTF) is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
ContributorsRaman, Sreedevi (Author) / Brafman, David (Thesis advisor) / Smith, Barbara (Committee member) / Plaiser, Christopher (Committee member) / Wang, Xiao (Committee member) / Tian, Xiaojun (Committee member) / Arizona State University (Publisher)
Created2021