Matching Items (4)
151344-Thumbnail Image.png
Description
At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual

At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual to develop reproductive characteristics or serve as a worker. In order to gain insight into the evolution of reproductive plasticity in the social insects, I investigated caste determination and dominance in the ant Harpegnathos saltator, a species that retains a number of ancestral characteristics. Treatment of worker larvae with a juvenile hormone (JH) analog induced late-instar larvae to develop as queens. At the colony level, workers must have a mechanism to regulate larval development to prevent queens from developing out of season. I identified a new behavior in H. saltator where workers bite larvae to inhibit queen determination. Workers could identify larval caste based on a chemical signal specific to queen-destined larvae, and the production of this signal was directly linked to increased JH levels. This association provides a connection between the physiological factors that induce queen development and the production of a caste-specific larval signal. In addition to caste determination at the larval stage, adult workers of H. saltator compete to establish a reproductive hierarchy. Unlike other social insects, dominance in H. saltator was not related to differences in JH or ecdysteroid levels. Instead, changes in brain levels of biogenic amines, particularly dopamine, were correlated with dominance and reproductive status. Receptor genes for dopamine were expressed in both the brain and ovaries of H. saltator, and this suggests that dopamine may coordinate changes in behavior at the neurological level with ovarian status. Together, these studies build on our understanding of reproductive plasticity in social insects and provide insight into the evolution of a reproductive division of labor.
ContributorsPenick, Clint A (Author) / Liebig, Jürgen (Thesis advisor) / Brent, Colin (Committee member) / Gadau, Jürgen (Committee member) / Hölldobler, Bert (Committee member) / Rutowski, Ron (Committee member) / Arizona State University (Publisher)
Created2012
147692-Thumbnail Image.png
Description

Much is still unknown about dominance hierarchies. Many different species form dominance hierarchies and each species have very different ways of forming these hierarchies. Some engage in various different dominance interactions to establish a dominant position. This experiment aims to use the ant species, Harpegnathos saltator, as a model to

Much is still unknown about dominance hierarchies. Many different species form dominance hierarchies and each species have very different ways of forming these hierarchies. Some engage in various different dominance interactions to establish a dominant position. This experiment aims to use the ant species, Harpegnathos saltator, as a model to explore what sets dominant individuals, or gamergates in this case, apart from non-dominant individuals, or non-gamergates. H. saltator ants perform various different behaviors such as dueling, which is a mutually beneficial behavior, dominance biting, which is an aggressive behavior, and policing which is used to bring down those who are dominant. These behaviors can be used to study the importance of initiation and aggression in hierarchy formation. This experiment will explore how aggression through dominance biting, duel initiation, group size, and time period affect the formation of gamergates. To do so, socially unstable colonies of 15, 30, and 60 ants were video recorded for days until gamergates were established. Then, from the recordings, a period of high activity was selected and observed for dueling, duel initiation, dominance biting, dominance bite downs, and policing. The results showed that gamergates tended to perform dominance biting and dominance bite downs far more than non-gamergates during the period of high activity, but not as clearly with duelling and duel initiations. It was inconclusive whether or not the combination of both dueling and dominance biting was what set gamergates apart from non gamergates as different groups showed different results. Gamergates performed visibly more dominance bite downs than non-gamergates, so aggression may be important in setting gamergates apart from non-gamergates. In terms of group size, the smallest group had the least number of gamergates and the least activity, and the medium and large group had a similar number of gamergates and activity.

ContributorsVarghese, Sarah (Author) / Liebig, Juergen (Thesis director) / Haight, Kevin (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Although social hierarchies are commonly found all throughout nature, the underlying mechanisms of their formation are still ambiguous. Hierarchies form through a wide range of interactions between subordinate and dominant individuals, and the ponerine ant Harpegnathos saltator provides the perfect model to explore such dominance behaviors. When the queen is

Although social hierarchies are commonly found all throughout nature, the underlying mechanisms of their formation are still ambiguous. Hierarchies form through a wide range of interactions between subordinate and dominant individuals, and the ponerine ant Harpegnathos saltator provides the perfect model to explore such dominance behaviors. When the queen is absent or her fecundity levels drop below a certain threshold, H. saltator workers undergo a dominance tournament, in which several individuals emerge as gamergates, reproductive workers that are not queens. During this tournament, several characterizable dominance behaviors are exhibited (antennal dueling, dominance biting, and policing), which can be used to study the behavioral and social dynamics in the formation of a reproductive hierarchy. Colonies of 15, 30, 60, and 120 workers were created in duplicate, and their dominance tournaments were recorded to study how these interactions impact gamergate establishment. Rather than studying these behaviors as isolated incidents, responses to policing behaviors (timid, neutral, or aggressive) and their duration were recorded along with the frequency of dueling. Three groups were determined: dueling future gamergates (DFG), dueling future non-gamergates (DFNG) and non-dueling individuals (ND). DFNG received many more policing attacks and the duration of these interactions lasted much longer. DFG consistently exhibited the most dueling. Timid and neutral responses were more common than aggressive responses, perhaps due to energy conversation purposes. Peaks in dueling correspond to peaks in policing, highlighting the dynamic behavioral interactions necessary for the formation of a reproductive hierarchy.

ContributorsOlivas, Victoria (Author) / Liebig, Juergen (Thesis director) / Shaffer, Zachary (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05
132615-Thumbnail Image.png
Description
Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers

Abstract:
Given the incredible variety in ant nest architecture, this experiment sought to evaluate how the nest architecture of Harpegnathos saltator differs from other species’ nests. To achieve the ability to evaluate the structure of H. saltator nest, we created experimental colonies varying in size from 20, 40, 60, 80 workers of Harpegnathos saltator in five-gallon buckets of sand and then allowing the colonies to grow for four months and twelve days. To create the nest casts, we developed a charcoal kiln out of a galvanized trash can and used a ceramic crucible to hold the aluminum being melted. Using molten aluminum to create nest casts of each colony produced, we obtained three poorly developed nests and one decent nest. The decent nest cast, the 80 worker H. saltator nest, was lacking key features of H. saltator nests that have been excavated in the field. However, they do share many of the same structures such as the shaping of the chambers. The ability of the experimental colonies to excavate the soil provided in the buckets to them was likely halted by poor penetration of water into superficial layers of the soil, thus making the soil too difficult to excavate and form the structures that are key elements of the species nest architecture. Despite these key challenges which the colonies faced, the 80-worker colony showed extensive vertical development and did display features associated with natural H. saltator colonies. Thus, given the display of some key features associated with characteristics of the H. saltator nests excavated in the field, it can be said that with some modification to technique that this is a viable avenue for future study of nest architecture and colony structure.
ContributorsAnderson, Clayton Edward (Author) / Liebig, Juergen (Thesis director) / Pratt, Stephen (Committee member) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05