Matching Items (4)
132563-Thumbnail Image.png
Description
Analog to Digital Converters (ADCs) are a critical component in modern circuit applications. ADCs are used in virtually every application in which a digital circuit is interacting with data from the real world, ranging from commercial applications to crucial military and aerospace applications, and are especially important when interacting with

Analog to Digital Converters (ADCs) are a critical component in modern circuit applications. ADCs are used in virtually every application in which a digital circuit is interacting with data from the real world, ranging from commercial applications to crucial military and aerospace applications, and are especially important when interacting with sensors that observe environmental factors. Due to the critical nature of these converters, as well as the vast range of environments in which they are used, it is important that they accurately sample data regardless of environmental factors. These environmental factors range from input noise and power supply variations to temperature and radiation, and it is important to know how each may affect the accuracy of the resulting data when designing circuits that depend upon the data from these ADCs. These environmental factors are considered hostile environments, as they each generally have a negative effect on the operation of an ADC. This thesis seeks to investigate the effects of several of these hostile environmental variables on the performance of analog to digital converters. Three different analog to digital converters with similar specifications were selected and analyzed under common hostile environments. Data was collected on multiple copies of an ADC and averaged together to analyze the results using multiple characteristics of converter performance. Performance metrics were obtained across a range of frequencies, input noise, input signal offsets, power supply voltages, and temperatures. The obtained results showed a clear decrease in performance farther from a room temperature environment, but the results for several other environmental variables showed either no significant correlation or resulted in inconclusive data.
ContributorsSwanson, Taylor Catherine (Co-author) / Millman, Hershel (Co-author) / Barnaby, Hugh (Thesis director) / Garrity, Douglas (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
188395-Thumbnail Image.png
Description
Children's hospitals can be a scary place for children and their parents. Patients are stressed and anxious because they are in a space that is unfamiliar to them, and being forced to be in a confined space feels like a punishment. Parents accompanying their children in hospitals are also emotionally

Children's hospitals can be a scary place for children and their parents. Patients are stressed and anxious because they are in a space that is unfamiliar to them, and being forced to be in a confined space feels like a punishment. Parents accompanying their children in hospitals are also emotionally stressed due to the overwhelming parental and financial responsibilities. There is a product opportunity gap which allows the patients to interact with the environment to make it more familiar to them and interact with the people around them to alleviate stress anxiety. This project aims to use the user-inspired engineering process to close that product opportunity gap.
ContributorsWang, Yujia (Author) / Brown, Hannah (Co-author) / Hedges, Craig (Thesis director) / Fischer, Adelheid (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Electrical Engineering Program (Contributor) / Software Engineering (Contributor) / WPC Graduate Programs (Contributor)
Created2023-05
Description

This honors thesis explores the potential use of LoRa technology for detecting moisture in a diaper. Tests of both onboard and external humidity sensors coupled with LoRa transmission are incredibly promising. The potential scale of the final device also shows much promise, measuring smaller than a U.S. dime. However, the

This honors thesis explores the potential use of LoRa technology for detecting moisture in a diaper. Tests of both onboard and external humidity sensors coupled with LoRa transmission are incredibly promising. The potential scale of the final device also shows much promise, measuring smaller than a U.S. dime. However, the estimated cost for producing these proof-of-concept units in bulk is $19.41 per unit. While this is believed to be a pessimistic estimate of the price, the cost of production remains too high regardless for large-scale implementation. The thesis concludes by emphasizing the need for further research and development to optimize the design and reduce the cost of production. Despite the limitations imposed by price, the idea of using LoRa in detecting moisture in a diaper remains intriguing and promising, however, RFID technology has many advantages, such as size, cost, and passive power features.

ContributorsBetlaf, Garrett (Author) / Aberle, James (Thesis director) / McDonald, James (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
165594-Thumbnail Image.png
Description

With the recent focus of attention towards remote work and mobile computing, the possibility of taking a powerful workstation wherever needed is enticing. However, even emerging laptops today struggle to compete with desktops in terms of cost, maintenance, and future upgrades. The price point of a powerful laptop is considerably

With the recent focus of attention towards remote work and mobile computing, the possibility of taking a powerful workstation wherever needed is enticing. However, even emerging laptops today struggle to compete with desktops in terms of cost, maintenance, and future upgrades. The price point of a powerful laptop is considerably higher compared to an equally powerful desktop computer, and most laptops are manufactured in a way that makes upgrading parts of the machine difficult or impossible, forcing a complete purchase in the event of failure or a component needing an upgrade. In the case where someone already owns a desktop computer and must be mobile, instead of needing to purchase a second device at full price, it may be possible to develop a low-cost computer that has just enough power to connect to the existing desktop and run all processing there, using the mobile device only as a user interface. This thesis will explore the development of a custom PCB that utilizes a Raspberry Pi Computer Module 4, as well as the development of a fork of the Open Source project Moonlight to stream a host machine's screen to a remote client. This implementation will be compared against other existing remote desktop solutions to analyze it's performance and quality.

ContributorsLathrum, Dylan (Author) / Heinrichs, Robert (Thesis director) / Acuna, Ruben (Committee member) / Jordan, Shawn (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor)
Created2022-05