Matching Items (2)
Filtering by

Clear all filters

Description

Jaguar population decline is largely attributed to habitat loss and retaliatory hunting. Maintaining a viable prey base in the wild can help to mitigate this issue and decrease human-wildlife conflicts. This study aims to assess the presence of prey species in jaguar habitat in order to inform conservation efforts to

Jaguar population decline is largely attributed to habitat loss and retaliatory hunting. Maintaining a viable prey base in the wild can help to mitigate this issue and decrease human-wildlife conflicts. This study aims to assess the presence of prey species in jaguar habitat in order to inform conservation efforts to maintain and improve the health and relative abundance of the wildlife community. We analyzed nearly 40,000 photographs from 85 camera traps to assess the presence of prey species at sites where jaguars are known to occur. Jaguar-prey site overlap was calculated based on the percent of jaguar sites where each prey species was present. Medium-sized mammal prey species (e.g. Central American agouti) were present across the majority (up to 87%) of sites, while large mammal prey species were present in 16%-42% of sites, varying by species. These results suggest that conservation management of jaguars would benefit from improved monitoring and maintenance of a stable prey community.

ContributorsLewis-Quan, Kaidence (Author) / Schipper, Jan (Thesis director) / Hall, Sharon (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2023-05
132538-Thumbnail Image.png
Description
Constructed treatment wetlands (CTW) are being increasingly utilized in urbanized areas as a cost-effective and environmentally-friendly method for treating wastewater. CTWs can be especially useful for urban areas in aridland environments because they facilitate the reuse of water during water shortages. In my study, I determined the rates

Constructed treatment wetlands (CTW) are being increasingly utilized in urbanized areas as a cost-effective and environmentally-friendly method for treating wastewater. CTWs can be especially useful for urban areas in aridland environments because they facilitate the reuse of water during water shortages. In my study, I determined the rates at which the aboveground and belowground emergent macrophytes sequestered nitrogen in a 42 ha aridland CTW in Phoenix, Arizona, USA. To do so, I measured foliar nitrogen content in aboveground and belowground biomass of three plant species groups (Typha latifolia + Typha domingensis, Schoenoplectus acutus + Schoenoplectus tabernaemontani, and Schoenoplectus californicus). Using these data, I calculated aboveground and belowground nitrogen budgets for the three species groups annually from 2011 to 2018.

Aboveground nitrogen content showed a maximum in 2011, decreasing until 2015, increasing again until 2017, and dropping in 2018; belowground nitrogen content showed the opposite temporal trend. Because foliar nitrogen content was assumed to be relatively constant over time, my data suggested that belowground nitrogen content increased between 2011 and 2015 and decreased between 2015 and 2017. Aboveground nitrogen content underwent fluctuations due to fluctuations in aboveground biomass. This occurred due to ‘thatching’, or events of widespread toppling of large macrophyte stands. The ratio of aboveground to belowground biomass can vary widely in the same CTW. My findings suggested that managing senesced aboveground plant material in CTWs may optimize the CTW’s ability to sequester nitrogen. Further research is needed to determine the best management strategies, as well as its possible implications.
ContributorsCrane, Austin Matthew (Author) / Childers, Daniel (Thesis director) / Sanchez, Christopher (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05