Matching Items (39)
Filtering by

Clear all filters

150329-Thumbnail Image.png
Description
The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum

The flow around a golf ball is studied using direct numerical simulation (DNS). An immersed boundary approach is adopted in which the incompressible Navier-Stokes equations are solved using a fractional step method on a structured, staggered grid in cylindrical coordinates. The boundary conditions on the surface are imposed using momentum forcing in the vicinity of the boundary. The flow solver is parallelized using a domain decomposition strategy and message passing interface (MPI), and exhibits linear scaling on as many as 500 processors. A laminar flow case is presented to verify the formal accuracy of the method. The immersed boundary approach is validated by comparison with computations of the flow over a smooth sphere. Simulations are performed at Reynolds numbers of 2.5 × 104 and 1.1 × 105 based on the diameter of the ball and the freestream speed and using grids comprised of more than 1.14 × 109 points. Flow visualizations reveal the location of separation, as well as the delay of complete detachment. Predictions of the aerodynamic forces at both Reynolds numbers are in reasonable agreement with measurements. Energy spectra of the velocity quantify the dominant frequencies of the flow near separation and in the wake. Time-averaged statistics reveal characteristic physical patterns in the flow as well as local trends within dimples. A mechanism of drag reduction due to the dimples is confirmed, and metrics for dimple optimization are proposed.
ContributorsSmith, Clinton E (Author) / Squires, Kyle D (Thesis advisor) / Balaras, Elias (Committee member) / Herrmann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Stanzione, Daniel C (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
150092-Thumbnail Image.png
Description
The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which

The evolution of single hairpin vortices and multiple interacting hairpin vortices are studied in direct numerical simulations of channel flow at Re-tau=395. The purpose of this study is to observe the effects of increased Reynolds number and varying initial conditions on the growth of hairpins and the conditions under which single hairpins autogenerate hairpin packets. The hairpin vortices are believed to provide a unified picture of wall turbulence and play an important role in the production of Reynolds shear stress which is directly related to turbulent drag. The structures of the initial three-dimensional vortices are extracted from the two-point spatial correlation of the fully turbulent direct numerical simulation of the velocity field by linear stochastic estimation and embedded in a mean flow having the profile of the fully turbulent flow. The Reynolds number of the present simulation is more than twice that of the Re-tau=180 flow from earlier literature and the conditional events used to define the stochastically estimated single vortex initial conditions include a number of new types of events such as quasi-streamwise vorticity and Q4 events. The effects of parameters like strength, asymmetry and position are evaluated and compared with existing results in the literature. This study then attempts to answer questions concerning how vortex mergers produce larger scale structures, a process that may contribute to the growth of length scale with increasing distance from the wall in turbulent wall flows. Multiple vortex interactions are studied in detail.
ContributorsParthasarathy, Praveen Kumar (Author) / Adrian, Ronald (Thesis advisor) / Huang, Huei-Ping (Committee member) / Herrmann, Marcus (Committee member) / Arizona State University (Publisher)
Created2011
134643-Thumbnail Image.png
Description
In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics

In this paper, the effectiveness and practical applications of cooling a computer's CPU using mineral oil is investigated. A computer processor or CPU may be immersed along with other electronics in mineral oil and still be operational. The mineral oil acts as a dielectric and prevents shorts in the electronics while also being thermally conductive and cooling the CPU. A simple comparison of a flat plate immersed in air versus mineral oil is considered using analytical natural convection correlations. The result of this comparison indicates that the plate cooled by natural convection in air would operate at 98.41[°C] while the plate cooled by mineral oil would operate at 32.20 [°C]. Next, CFD in ANSYS Fluent was used to conduct simulation with forced convection representing a CPU fan driving fluid flow to cool the CPU. A comparison is made between cooling done with air and mineral oil. The results of the CFD simulation results indicate that using mineral oil as a substitute to air as the cooling fluid reduced the CPU operating temperature by sixty degrees Celsius. The use of mineral oil as a cooling fluid for a consumer computer has valid thermal benefits, but the practical challenges of the method will likely prevent widespread adoption.
ContributorsTichacek, Louis Joseph (Author) / Huang, Huei-Ping (Thesis director) / Herrmann, Marcus (Committee member) / Middleton, James (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
168691-Thumbnail Image.png
Description
Rooftop photovoltaic (PV) systems are becoming increasingly common as the efficiency of solar panels increase, the cost decreases, and worries about climate change increase and become increasingly prevalent. An under explored aspect of rooftop solar systems is the thermal effects that the systems have on the local area. These effects

Rooftop photovoltaic (PV) systems are becoming increasingly common as the efficiency of solar panels increase, the cost decreases, and worries about climate change increase and become increasingly prevalent. An under explored aspect of rooftop solar systems is the thermal effects that the systems have on the local area. These effects are investigated in this paper to determine the overall impact that solar systems have on the heating and cooling demands of a building as well as on the efficiency losses of the solar panels due to the increased temperature on the panels themselves. The specific building studied in this paper is the Goldwater Center for Science and Engineering located in the Tempe campus of Arizona State University. The ambient conditions were modeled from a typical July day in Tempe. A numerical model of a simple flat roof was also created to find the average rooftop temperature throughout the day. Through this study it was determined that solar panels cause a decrease in the maximum temperature of the rooftop during the day, while reducing the ability of the roof to be cooled during the night. The solar panels also saw a high temperature during the day during the most productive time of day for solar panels, which saw a decrease in total energy production for the panels.
ContributorsNaber, Nicholas (Author) / Huang, Huei-Ping (Thesis advisor) / Phelan, Patrick (Committee member) / Bocanegra, Luis (Committee member) / Arizona State University (Publisher)
Created2022
168808-Thumbnail Image.png
Description
Dehumidifiers are ubiquitous and essential household appliances in many parts of the world. They are used extensively in tropical and sub-tropical environments to lower humidity in living spaces, where high ambient humidity can lead to numerous negative health effects from mild physical discomfort to more serious conditions such as mold

Dehumidifiers are ubiquitous and essential household appliances in many parts of the world. They are used extensively in tropical and sub-tropical environments to lower humidity in living spaces, where high ambient humidity can lead to numerous negative health effects from mild physical discomfort to more serious conditions such as mold build up in structures and dangerous illnesses in humans. Most common dehumidifiers are based on conventional mechanical refrigeration cycles, where the effects of condensation heat transfer play a critical role in their effectiveness. In these devices, humid ambient air flows over a cold evaporator, which lowers the temperature of the humid ambient air below its dew point temperature and therefore decreases its water content by causing liquid water condensation on the evaporator surface. The rate at which humidity can be extracted from the ambient air is governed in part by how quickly the evaporator can shed the condensed droplets. Recent advances in soft, stretchable, thermally enhanced (through the addition of liquid metals) silicone tubing offer the potential to use these stretchable tubes in place of conventional copper pipe for applications such as dehumidification. Copper is a common material choice for dehumidifier evaporator tubing owing to its ubiquity and its high thermal conductivity, but it has several thermal downsides. Specifically, copper tubes remain static and typically rely on gravity alone to remove water droplets when they reach a sufficient mass. Additionally, copper’s naturally hydrophilic surface promotes film-wise condensation, which is substantially less effective than dropwise condensation. In contrast to copper, thermally enhanced soft stretchable tubes have naturally hydrophobic surfaces that promote the more effective dropwise condensation mode and a soft surface that offers higher nucleation density. However, soft surfaces also increase droplet pinning, which inhibits their departure. This work experimentally explores the effects of periodic axial stretching and retraction of soft tubing internally cooled with water on droplet condensation dynamics on its exterior surface. Results are discussed in terms of overall system thermal performance and real-time condensation imaging. An overall null result is discovered, and recommendations for future experiments are made.
Contributorsnordstog, thomas (Author) / Rykaczewski, Konrad (Thesis advisor) / Wang, Robert (Committee member) / Devasenathipathy, Shankar (Committee member) / Arizona State University (Publisher)
Created2022
168832-Thumbnail Image.png
Description
This dissertation develops and demonstrates a new physics-based approach that provides computational stability of subgrid stress models in large eddy simulations while producing far smaller changes in the original subgrid stress and subgrid production fields than do current \textit{ad hoc} stabilization methods. A pseudo-spectral code that is shown here

This dissertation develops and demonstrates a new physics-based approach that provides computational stability of subgrid stress models in large eddy simulations while producing far smaller changes in the original subgrid stress and subgrid production fields than do current \textit{ad hoc} stabilization methods. A pseudo-spectral code that is shown here to be almost entirely non-dissipative yet inherently stable without any subgrid model is used to conduct simulations with stable and unstable subgrid stress models. Results show that initial instability, subsequent exponential growth, and eventual machine overflow occur via a highly localized dynamical process that results from interactions among terms in the kinetic energy and enstrophy transport equations. This process begins first at one material point and then occurs at increasingly more material points, with local exponential growth rates of kinetic energy and enstrophy being the same for all points, until machine overflow eventually occurs at the material point where the process began first. A Lagrangian backtracking scheme is developed and applied to this material point, allowing backward-in-time tracking of all terms in the kinetic energy and enstrophy transport equations. This gives insights into the dynamics that produce this local instability and its subsequent exponential growth, with the initial instability shown to result from interactions between the subgrid production and subgrid redistribution terms. Elementary backscatter limiting based on locally reducing individual subgrid stress components that contribute to local kinetic energy backscatter is shown to stabilize any stress model, but still produces substantial changes in the stress and production fields. The rational Boolean stabilization method developed here instead uses the local subgrid production and subgrid redistribution rates to determine where and how individual subgrid stress components must be rescaled to provide local backscatter limiting and/or forward scatter amplification. This stabilizes all subgrid stress models while producing only small changes in the subgrid stress and production fields. Rational Boolean stabilization is computationally fast, and can be generalized to stabilize models for other subgrid terms in large eddy simulations while producing only small changes in their resulting fields. This solves a key problem that has previously limited the accuracy of large eddy simulations.
ContributorsTorres, Emilio Elijah (Author) / Dahm, Werner JA (Thesis advisor) / Calhoun, Ronald J (Committee member) / Herrmann, Marcus A (Committee member) / Kasbaoui, Mohamed H (Committee member) / Mikellides, Pavlos G (Committee member) / Arizona State University (Publisher)
Created2022
171995-Thumbnail Image.png
Description
Spray flows are important in a myriad of practical applications including fuel injection, ink-jet printing, agricultural sprays, and industrial processes. Two-phase sprays find particular use for spot cooling applications with high heat fluxes as in casting processes and power electronics. Computability of sprays in a cost-effective manner provides a path

Spray flows are important in a myriad of practical applications including fuel injection, ink-jet printing, agricultural sprays, and industrial processes. Two-phase sprays find particular use for spot cooling applications with high heat fluxes as in casting processes and power electronics. Computability of sprays in a cost-effective manner provides a path to optimize the design of nozzles to tune the spray characteristics for the needs of a particular application. Significant research has so far been devoted to understand and characterize spray flows better, be it from a theoretical, experimental or computational standpoint. The current thesis discusses a methodology for modeling primary atomization using the Quadratic Formula which is derived from an integral formulation of the governing equations. The framework is then applied to different examples of flat-fan hydraulic sprays. For each case, the spray is first resolved as a continuous fluid using the volume of fluid method. Atomization criterion is then applied to the velocity flow-field to determine the sites for primary atomization. At each site, local diameters for particle injection is determined using the quadratic formula. The trajectory of injected particles are then monitored through a particle tracking algorithm. The results from the numerical analysis are compared with experimental data to validate the computational framework.
ContributorsBhardwaj, Angshuman (Author) / Lee, T.-W. (Thesis advisor) / Herrmann, Marcus (Committee member) / Rykaczewski, Konrad (Committee member) / Arizona State University (Publisher)
Created2022
171461-Thumbnail Image.png
Description
This work aims to address the design optimization of bio-inspired locomotive devices in collective swimming by developing a computational methodology which combines surrogate-based optimization with high fidelity fluid-structure interactions (FSI) simulations of thunniform swimmers. Three main phases highlight the contribution and novelty of the current work. The first phase includes

This work aims to address the design optimization of bio-inspired locomotive devices in collective swimming by developing a computational methodology which combines surrogate-based optimization with high fidelity fluid-structure interactions (FSI) simulations of thunniform swimmers. Three main phases highlight the contribution and novelty of the current work. The first phase includes the development and bench-marking of a constrained surrogate-based optimization algorithm which is appropriate to the current design problem. Additionally, new FSI techniques, such as a volume-conservation scheme, has been developed to enhance the accuracy and speed of the simulations. The second phase involves an investigation of the optimized hydrodynamics of a solitary accelerating self-propelled thunniform swimmer during start-up. The third phase extends the analysis to include the optimized hydrodynamics of accelerating swimmers in phalanx schools. Future work includes extending the analysis to the optimized hydrodynamics of steady-state and accelerating swimmers in a diamond-shaped school. The results of the first phase indicate that the proposed optimization algorithm maintains a competitive performance when compared to other gradient-based and gradient-free methods, in dealing with expensive simulations-based black-box optimization problems with constraints. In addition, the proposed optimization algorithm is capable of insuring strictly feasible candidates during the optimization procedure, which is a desirable property in applied engineering problems where design variables must remain feasible for simulations or experiments not to fail. The results of the second phase indicate that the optimized kinematic gait of a solitary accelerating swimmer generates the reverse Karman vortex street associated with high propulsive efficiency. Moreover, the efficiency of sub-optimum modes, in solitary swimming, is found to increase with both the tail amplitude and the effective flapping length of the swimmer, and a new scaling law is proposed to capture these trends. Results of the third phase indicate that the optimal midline kinematics in accelerating phalanx schools resemble those of accelerating solitary swimmers. The optimal separation distance in a phalanx school is shown to be around 2L (where L is the swimmer's total length). Furthermore, separation distance is shown to have a stronger effect, ceteris paribus, on the propulsion efficiency of a school when compared to phase synchronization.
ContributorsAbouhussein, Ahmed (Author) / Peet, Yulia (Thesis advisor) / Adrian, Ronald (Committee member) / Kim, Jeonglae (Committee member) / Kasbaoui, Mohamed (Committee member) / Mittelmann, Hans (Committee member) / Arizona State University (Publisher)
Created2022
190890-Thumbnail Image.png
Description
Four-Dimensional Emission Tomography (4DET) and Four-Dimensional Absorption Tomography (4DAT) are measurement techniques that utilize multiple 2D images (or projections) acquired via an optical device, such as a camera, to reconstruct scalar and velocity fields of a flow field being studied, using either emission- or absorption-based measurements, respectively. Turbulence is inherently

Four-Dimensional Emission Tomography (4DET) and Four-Dimensional Absorption Tomography (4DAT) are measurement techniques that utilize multiple 2D images (or projections) acquired via an optical device, such as a camera, to reconstruct scalar and velocity fields of a flow field being studied, using either emission- or absorption-based measurements, respectively. Turbulence is inherently three-dimensional, and thus research in the field benefits from a comprehensive understanding of coherent structures to fully explain the flow physics involved, for example, in the phenomena resulting from a turbulent jet. This thesis looks at the development, application and validity/practicality of emission tomography as an experimental approach to a obtaining a comprehensive understanding of coherent structures in turbulent flows. A pseudo test domain is decided upon, with a varying number of camera objects created to image the region of interest. Rays are then modelled as cylindrical volumes to build the weight matrix. Projection images are generated with Gaussian concentration defined as a spatial function of the domain to build the projection matrix. Finally, concentration within the domain, evaluated via the Least Squares method, is compared against original concentration values. The reconstruction algorithm is validated and checked for accuracy with DNS data of a steady turbulent jet. Reconstruction accuracy and a statistical analysis of the reconstructions are also presented.
ContributorsRodrigues, Cossack (Author) / Pathikonda, Gokul (Thesis advisor) / Grauer, Samuel (Committee member) / Adrian, Ronald (Committee member) / Kasbaoui, Mohamed (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2023
190851-Thumbnail Image.png
Description
In the first chapter of the study, wavelet multiresolution analysis (WMRA) is extended to describe inter-phase, cross-scale interactions involving turbulence kinetic energy (TKE) of particle-laden turbulence. Homogeneous isotropic turbulence suspended with inertial particles at the Stokes number of unity is analyzed. Effects of the two-way coupling on spectral TKE transfer

In the first chapter of the study, wavelet multiresolution analysis (WMRA) is extended to describe inter-phase, cross-scale interactions involving turbulence kinetic energy (TKE) of particle-laden turbulence. Homogeneous isotropic turbulence suspended with inertial particles at the Stokes number of unity is analyzed. Effects of the two-way coupling on spectral TKE transfer are examined. Particle concentration alone does not indicate a definite direction of inter-phase energy transfer. Rather, particle clusters behave as an energy source or sink with similar probabilities. In addition, the joint statistics show thequalitative consistency of the subgrid-scale (SGS) Stokes number in describing the two-way interactions, which should be considered in the SGS modeling of two-way coupled particle-laden turbulence. In the second chapter, direct numerical simulation (DNS) of viscoelastic turbulent channel flow is conducted and the resulting velocity field is analyzed using the WMRA to identify the drag reduction mechanism by polymer additives. At the friction Reynolds number Re? = 145 and the Weissenberg number Wi = 40, the DNS of a viscoelastic channel flow is performed using the finitely extensible nonlinear elastic model. In-plane WMRA is performed to investigate the modulation of TKE due to interactions between polymer solution and turbulence across different scales. A formulation is proposed to evaluate the effects of polymers on the spectral TKE transfer. Using joint probability analysis, it has been shown that polymers absorb TKE from the near-wall region and store it as elastic energy at ?+ ≲ 20, while they enhance TKE in the log layer. Ultimately, this study introduces a framework for optimizing large-eddy simulation (LES) models via WMRA. By employing the spectrally and spatially localized decomposition of wavelets, an optimal balance between resolved inter-scale energy transfer and modeled SGS dissipation is enforced across a range of nominal LES grid widths. This formulation either determines a constant for the SGS model or offers an analytical expression for SGS closure that maximizes spectral energy transfer between resolved and unresolved scales at a specific cutoff scale. This proposed approach is assessed in the context of incompressible HIT. The constant of the one-parameter Smagorinsky closure model is optimized to align with the theoretical predictions.
ContributorsNabavi Bavil, Miralireza (Author) / Kim, Jeonglae JK (Thesis advisor) / Peet, Yulia YP (Committee member) / Kasbaoui, Mohamed Houssem MK (Committee member) / Pathikonda, Gokul GP (Committee member) / Scotti, Alberto AS (Committee member) / Arizona State University (Publisher)
Created2023