Matching Items (4)
Filtering by

Clear all filters

171359-Thumbnail Image.png
Description
Theoretical analyses of liquid atomization (bulk to droplet conversion) and turbulence have potential to advance the computability of these flows. Instead of relying on full computations or models, fundamental conservation equations can be manipulated to generate partial or full solutions. For example, integral form of the mass and energy for

Theoretical analyses of liquid atomization (bulk to droplet conversion) and turbulence have potential to advance the computability of these flows. Instead of relying on full computations or models, fundamental conservation equations can be manipulated to generate partial or full solutions. For example, integral form of the mass and energy for spray flows leads to an explicit relationship between the drop size and liquid velocities. This is an ideal form to integrate with existing computational fluid dynamic (CFD), which is well developed to solve for the liquid velocities, i.e., the momentum equation(s). Theoretical adaption to CFD has been performed for various injection geometries, with results that compare quite well with experimental data. Since the drop size is provided analytically, computational time/cost for simulating spray flows with liquid atomization is no more than single-phase flows. Some advances have also been made on turbulent flows, by using a new set of perspectives on transport, scaling and energy distributions. Conservation equations for turbulence momentum and kinetic energy have been derived in a coordinate frame moving with the local mean velocities, which produce the Reynolds stress components, without modeling. Scaling of the Reynolds stress is also found at the first- and second-gradient levels. Finally, maximum-entropy principle has been used to derive the energy spectra in turbulent flows.
ContributorsPark, Jung Eun (Author) / Lee, Taewoo (Thesis advisor) / Gardner, Carl (Committee member) / Huang, Huei-Ping (Committee member) / Kim, Jeonglae (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2022
154007-Thumbnail Image.png
Description
The study of deflagration to detonation transition (DDT) in explosives is of prime importance with regards to insensitive munitions (IM). Critical damage owing to thermal or shock stimuli could translate to significant loss of life and material. The present study models detonation and deflagration of a commonly used granular explosive:

The study of deflagration to detonation transition (DDT) in explosives is of prime importance with regards to insensitive munitions (IM). Critical damage owing to thermal or shock stimuli could translate to significant loss of life and material. The present study models detonation and deflagration of a commonly used granular explosive: cyclotetramethylene-tetranitramine, HMX. A robust literature review is followed by computational modeling of gas gun and DDT tube test data using the Sandia National Lab three-dimensional multi-material Eulerian hydrocode CTH. This dissertation proposes new computational practices and models that aid in predicting shock stimulus IM response. CTH was first used to model experimental data sets of DDT tubes from both Naval Surface Weapons Center and Los Alamos National Laboratory which were initiated by pyrogenic material and a piston, respectively. Analytical verification was performed, where possible, for detonation via empirical based equations at the Chapman Jouguet state with errors below 2.1%, and deflagration via pressure dependent burn rate equations. CTH simulations include inert, history variable reactive burn and Arrhenius models. The results are in excellent agreement with published HMX detonation velocities. Novel additions include accurate simulation of the pyrogenic material BKNO3 and the inclusion of porosity in energetic materials. The treatment of compaction is especially important in modeling precursory hotspots, caused by hydrodynamic collapse of void regions or grain interactions, prior to DDT of granular explosives. The CTH compaction model of HMX was verified within 11% error via a five pronged validation approach using gas gun data and employed use of a newly generated set of P-α parameters for granular HMX in a Mie-Gruneisen Equation of State. Next, the additions of compaction were extended to a volumetric surface burning model of HMX and compare well to a set of empirical burn rates. Lastly, the compendium of detonation and deflagration models was applied to the aforementioned DDT tubes and demonstrate working functionalities of all models, albeit at the expense of significant computational resources. A robust hydrocode methodology is proposed to make use of the deflagration, compaction and detonation models as a means to predict IM response to shock stimulus of granular explosive materials.
ContributorsMahon, Kelly Susan (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Chen, Kangping (Committee member) / Jiao, Yang (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2015
157738-Thumbnail Image.png
Description
Water is one of, if not the most valuable natural resource but extremely challenging to manage. According to old research in the field, many Water Distribution Systems (WDSs) around the world lose above 40 percent of clean water pumped into the distribution system because of unfortune leaks before the water

Water is one of, if not the most valuable natural resource but extremely challenging to manage. According to old research in the field, many Water Distribution Systems (WDSs) around the world lose above 40 percent of clean water pumped into the distribution system because of unfortune leaks before the water gets anywhere from the fresh water resources. By reducing the amount of water leaked, distribution system managers can reduce the amount of money, resources, and energy wasted on finding and repairing the leaks, and then producing and pumping water, increase system reliability and more easily satisfy present and future needs of all consumers. But having access to this information pre-amatively and sufficiently can be complex and time taking. For large companies like SRP who are moving tonnes of water from various water bodies around phoenix area, it is even more crucial to efficiently locate and characterize the leaks. And phoenix being a busy city, it is not easy to go start digging everywhere, whenever a loss in pressure is reported at the destination.

Keeping this in mind, non-invasive methods to geo-physically work on it needs attention. There is a lot of potential in this field of work to even help with environmental crisis as this helps in places where water theft is big and is conducted through leaks in the distribution system. Methods like Acoustic sensing and ground penetrating radars have shown good results, and the work done in this thesis helps us realise the limitations and extents to which they can be used in the phoenix are.

The concrete pipes used by SRP are would not be able to generate enough acoustic signals to be affectively picked up by a hydrophone at the opening, so the GPR would be helpful in finding the initial location of the leak, as the water around the leak would make the sand wet and hence show a clear difference on the GPR. After that the frequency spectrum can be checked around that point which would show difference from another where we know a leak is not present.
ContributorsSrivastava, Siddhant (Author) / Lee, Taewoo (Thesis advisor) / Kwan, Beomjin (Committee member) / Kim, Jeonglae (Committee member) / Arizona State University (Publisher)
Created2019
158238-Thumbnail Image.png
Description
Computability of spray flows is an important issue, from both fundamental and practical perspectives. Spray flows have important applications in fuel injection, agriculture, medical devices, and industrial processes such as spray cooling. For this reason, many efforts have been devoted to experimental, computational and some theoretical aspects of spray

Computability of spray flows is an important issue, from both fundamental and practical perspectives. Spray flows have important applications in fuel injection, agriculture, medical devices, and industrial processes such as spray cooling. For this reason, many efforts have been devoted to experimental, computational and some theoretical aspects of spray flows. In particular, primary atomization, the process of bulk liquid transitioning to small droplets, is a central and probably the most difficult aspect of spray flows. This thesis discusses developed methods, results, and needed improvements in the modeling of primary atomization using a predictive Sauter Mean Diameter (SMD) formula. Primary atomization for round injectors and simplex atomizers is modeled using a three-step procedure. For each spray geometry, a volume-of-fluid simulation is run to resolve the trajectory of the intact liquid core. Atomization criterion is applied to the volume-of-fluid velocity field to determine atomization sites. Local droplet size is predicted at the atomization sites using the quadratic formula for Sauter Mean Diameter. Droplets with the computed drop size are injected from the atomization sites and are tracked as point-particles. A User Defined Memory (UDM) code is employed to compute steady-state Sauter Mean Diameter statistics at locations corresponding to experimental interrogation locations. The resulting Sauter Mean Diameter, droplet trajectory, and droplet velocity are compared against experimental data to validate the computational protocol. This protocol can be implemented on coarse-grid, time-averaged simulations of spray flows, and produces convincing results when compared with experimental data for pressure-atomized sprays with and without swirl. This approach is general and can be adapted in any spray geometry for complete and efficient computations of spray flows.
ContributorsGreenlee, Benjamin (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Kasbaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2020