Matching Items (20)
168340-Thumbnail Image.png
Description
This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna

This dissertation consists of four parts: design of antenna in lossy media, analysisof wire antennas using electric field integral equation (EFIE) and wavelets, modeling and measurement of grounded waveguide coplanar waveguide (GCPW) for automotive radar, and E-Band 3-D printed antenna and measurement using VNA. In the first part, the antenna is modeled and simulated in lossy media. First, the vector wave functions is solved in the fundamental mode. Next the energy flow velocity is plotted to show near-field energy distribution for both TM and TE in air and seawater environment. Finally the power relation in seawater is derived to calculate the source dipole moment and required power. In the second part, the current distribution on the antenna is derived by solving EFIE with moment of methods (MoM). Both triangle and Coifman wavelet (Coiflet) are used as basis and weight functions. Then Input impedance of the antenna is computed and results are compared with traditional sinusoid current distribution assumption. Finally the input impedance of designed antenna is computed and matching network is designed and show resonant at designed frequency. In the third part, GCPW is modeled and measured in E-band. Laboratory measurements are conducted in 75 to 84 GHz. The original system is embedded with error boxes due to misalignment and needed to be de-embedded. Then the measurement data is processed and the results is compared with raw data. In the fourth part, the horn antennas and slotted waveguide array antenna (SWA) are designed for automotive radar in 75GHz to 78GHz. The horn antennas are fabricated using 3D printing of ABS material, and electro-plating with copper. The analytic solution and HFSS simulation show good agreement with measurement.
ContributorsZhou, Sai (Author) / Pan, George (Thesis advisor) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Allee, David (Committee member) / Arizona State University (Publisher)
Created2021
193368-Thumbnail Image.png
Description
In this dissertation, enhanced coherent detection of terahertz (THz) radiation is presented for Silicon integrated circuits (ICs). In general THz receivers implemented in silicon technologies face a challenge due to the high noise figure (NF) of the low noise amplifier (LNA) and low conversion gain of the radio frequency (RF)

In this dissertation, enhanced coherent detection of terahertz (THz) radiation is presented for Silicon integrated circuits (ICs). In general THz receivers implemented in silicon technologies face a challenge due to the high noise figure (NF) of the low noise amplifier (LNA) and low conversion gain of the radio frequency (RF) mixers. Moreover, issues with implementing local oscillators (LOs) further compound these challenges, including power driving mixes, distribution networks, and overall power consumption, particularly for large-scale arrays. To address these inherent obstacles, two notable cases of enhancing THz receiver performance are presented. In the Sideband Separation Receiver (SSR) for space-borne applications is introduced. Implemented in SiGe BiCMOS technology this broadband SSR boasts a high Image Rejection Ratio (IRR) exceeding 20 dB across 220 – 320 GHz. Employing a modified Weaver architecture, optimized for simultaneous spectral line observation, it utilizes an I/Q double down-conversion, pushing the technological boundaries of silicon and enabling large-scale focal plane array (FPA) deployment in space. Notably, the use of a sub-harmonic down-conversion mixer (SHM) significantly reduces LO power generation challenges, enhancing scalability while maintaining minimal NF. In the 4x4 FPA active THz imager, a dual-polarized patch antenna operating at 420 GHz utilizes orthogonal polarization for RF and LO signals, coupled with a coherent homodyne power detector. Realized in 0.13µm SiGe HBT technology, the power detector is co-designing with the antenna to ensure minimal crosstalk and achieving -30dB cross-polarization isolation. Illumination of the LO enhances power detector performance without on-chip routing complexities, enabling scalability to 1K pixel THz imagers. Each pixel achieves a Noise-Equivalent Power (NEP) of 1 pW/√Hz at 420 GHz, and integration with a readout and digital filter ensures high dynamic range. Furthermore, this study explores radiation hardening techniques to mitigate single-event effects (SEEs) in high-frequency receivers operating in space. Leveraging a W-band receiver in 90 nm SiGe BiCMOS technology, matching considerations and diverse modes of operation are employed to reduce SEE susceptibility. Transient current pulse modeling, validated through TCAD simulations, demonstrates the effectiveness of proposed techniques in substantially mitigating SETs within the proposed radiation-hardened-by-design (RHBD) receiver front-end.
ContributorsAl Seragi, Ebrahim (Author) / Zeinolabedinzadeh, Saeed (Thesis advisor) / Trichopoulos, Georgios (Committee member) / Bakkaloglu, Bertan (Committee member) / Aberle, James (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2024
193692-Thumbnail Image.png
Description
In the age of 5th and upcoming 6th generation fighter aircraft one key proponent of these impressive machines is the inclusion of stealth. This inclusion is demonstrated by thoughtful design pertaining to the shape of the aircraft and rigorous material selection. Both criteria aim to minimize the radar cross section

In the age of 5th and upcoming 6th generation fighter aircraft one key proponent of these impressive machines is the inclusion of stealth. This inclusion is demonstrated by thoughtful design pertaining to the shape of the aircraft and rigorous material selection. Both criteria aim to minimize the radar cross section of these aircraft over a wide bandwidth of frequencies corresponding to an ever-evolving field of radar technology. Stealth is both an offensive and defensive capability meaning that service men and women depend on this feature to carry out their missions, and to return home safely. The goal of this paper is to introduce a novel method to designing disordered two-phase composites with desired electromagnetic properties. This task is accomplished by employing the spatial point correlation function, specifically at the two-point level. Effective at describing the dispersion of phases within a two-phase system, the two-point correlation function serves as a statistical function that becomes a realizable target for heterogeneous composites. Simulated annealing is exercised to reconstruct two-phase composite microstructures that initially do not match their target function, followed by two separate experiments aimed at studying the impact of the provided inputs on its outcome. Once conditions for reconstructing highly accurate microstructures are identified, modifications are made to the target function to extract and compare dielectric constants associated with each microstructure. Both the real and imaginary components, which respectively affect wave propagation and attenuation, of the dielectric constants are plotted to illustrate their behavior with increasing wavenumber. Conclusions suggest that favorable values of the complex dielectric constant can be reverse-engineered via careful consideration of the two-point correlation function. Subsequently, corresponding microstructures of the composite can be simulated and then produced through 3-D printing for testing and practical applications.
ContributorsPlantz, Alex Chadewick (Author) / Jiao, Yang (Thesis advisor) / Zhuang, Houlong (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2024
187661-Thumbnail Image.png
Description
Antenna arrays are widely used in wireless communication, radar, remote sensing, and other fields. Compared to traditional linear antenna arrays, novel nonlinear antenna arrays have fascinating advantages in terms of structural simplicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation explores a novel design of

Antenna arrays are widely used in wireless communication, radar, remote sensing, and other fields. Compared to traditional linear antenna arrays, novel nonlinear antenna arrays have fascinating advantages in terms of structural simplicity, lower cost, wider bandwidth, faster scanning speed, and lower side-lobe levels. This dissertation explores a novel design of a phased array antenna with an augmented scanning range, aiming to establish a clear connection between mathematical principles and practical circuitry. To achieve this goal, the Van der Pol (VDP) model is applied to a single-transistor oscillator to obtain the isolated limit cycle. The coupled oscillators are then integrated into a 1 times 7 coupled phased array, using the Keysight PathWave Advanced Design System (ADS) for tuning and optimization. The VDP model is used for analytic study of bifurcation, quasi-sinusoidal oscillation, quasi-periodic chaos, and oscillator death, while ADS schematics guide engineering implementation and physical fabrication. The coupled oscillators drive cavity-backed antennas, forming a one-dimensional scanning antenna array of 1 times 7. The approaches for increasing the scanning range performance are discussed.
ContributorsZhang, Kaiyue (Author) / Pan, George (Thesis advisor) / Yu, Hongbin (Committee member) / Aberle, James (Committee member) / Palais, Joseph (Committee member) / Arizona State University (Publisher)
Created2023
187543-Thumbnail Image.png
Description
The rapid growth of emerging technologies is placing enormous demand on the seamless access to the extensive amount of data, which drives an unprecedented need for substantially higher data-transfer rates. As 1.6 Terabit Ethernet (TbE) specifications are being developed, high speed interconnects along with advanced materials and processes play a

The rapid growth of emerging technologies is placing enormous demand on the seamless access to the extensive amount of data, which drives an unprecedented need for substantially higher data-transfer rates. As 1.6 Terabit Ethernet (TbE) specifications are being developed, high speed interconnects along with advanced materials and processes play a crucial role in technology enabling. However, validation of interconnect performance becomes increasingly challenging at these higher speeds. High-speed interconnect behavior can be reliably predicted if interconnect models are successfully validated against measurements. In industry, it is still not common practice to perform validation at actual use conditions. Therefore, there is an urge for a restructured design methodology and metrology based on temperature and humidity, to set realistic specs for high speed interconnects and reduce probability of failure under variations. Uncertainty quantification and propagation for interconnect validation is critical to assess the correlation quality more objectively, as well as to determine the bottleneck to improve the accuracy, repeatability and reproducibility of all the measurements involved in validation. The purpose of this work is to create a methodology that is both academically rigorous and has a significant impact on industry. This methodology provides an accurate characterization of the electrical performance of interconnects under realistic use-conditions, accompanied by an uncertainty analysis to improve the assessment of correlation quality. Part of this work contributed to the Packaging Benchmark Suite developed by IEEE EPS technical committee on electrical design, modeling, and simulation.
ContributorsGeyik, Cemil S (Author) / Aberle, James T (Thesis advisor) / Zhang, Zhichao (Committee member) / Polka, Lesley A (Committee member) / Ozev, Sule (Committee member) / Arizona State University (Publisher)
Created2023
193437-Thumbnail Image.png
Description
Traditional imaging systems such as the human eye and optical cameras capture the scene ahead of them called the line of sight (LoS) objects. These imaging systems are limited by their lack of field of view (FoV). Information about the non-line of sight (NLoS) objects is lost due to the

Traditional imaging systems such as the human eye and optical cameras capture the scene ahead of them called the line of sight (LoS) objects. These imaging systems are limited by their lack of field of view (FoV). Information about the non-line of sight (NLoS) objects is lost due to the objects in the LoS. They are either opaque or absorb all the incident energy, allowing for no information about the NLoS scene to be transmitted back to the detector. Amongst the popular methods used for NLoS imaging, acoustic imaging [1] offers low resolutions and suffers from interference from environmental factors. Optical methods like time-of-flight (ToF) imaging perform poorly due to shorter wavelengths leading to more scattering and absorption by occluding objects in the scene. NLoS imaging with electromagnetic (EM) rays is preferred over traditional methods because of its allowance for higher spatial resolution. It is subject to lesser interference by atmospheric factors (wind, temperature gradients.)Most everyday surfaces offer diffuse and specular reflection due to their material properties. They behave as lossy mirrors enabling propagation paths between a Terahertz (THz) Imaging System and the NLoS objects. THz waves (300 GHz – 10 THz) are the least explored if not exploited band of frequencies in the EM spectrum. A THz NLoS Imaging system is a Radar (Radio Detection and Ranging) that works by recording the backscatter information received from sending out EM signals into free space where the EM signals undergo multiple bounces off different objects in the scene. Due to the inherent nature of the radars, the return information is perceived in a way that the NLoS objects are improperly depicted when reconstructed. A correction algorithm to account for this misplacement in the reconstruction of NLoS images is proposed and its implementation is discussed in detail as a part of this work. The reconstruction algorithm processes the obtained raw THz image and performs multiple stages of classification between LoS and NLoS objects using ray casting [2]. Then the information about line-of-sight objects is fed to a line detection mechanism to detect and model the detected surfaces as mirrors. Mirror folding [3] is performed starting from the farthest generations for the objects in non-line of sight. This algorithm has been evaluated with simulated images of objects behind a single wall and two walls. With the help of a scanning THz imaging system, measurements were collected in a controlled environment, and this data was fed into the implemented algorithm for testing.
ContributorsSamavedam, Shanmukha Saketha Ramanujam (Author) / Trichopoulos, Georgios (Thesis advisor) / Alkhateeb, Ahmed (Committee member) / Imani, Seyedmohammadreza Faghih (Committee member) / Arizona State University (Publisher)
Created2024
161744-Thumbnail Image.png
Description
This thesis presents three novel studies. The first two works focus on galvanically isolated chip-to-chip communication, and the third research studies class-E pulse-width modulated power amplifiers. First, a common-mode resilient CMOS (complementary metal-oxide-semiconductor) galvanically isolated Radio Frequency (RF) chip-to-chip communication system is presented utilizing laterally resonant coupled circuits to increases

This thesis presents three novel studies. The first two works focus on galvanically isolated chip-to-chip communication, and the third research studies class-E pulse-width modulated power amplifiers. First, a common-mode resilient CMOS (complementary metal-oxide-semiconductor) galvanically isolated Radio Frequency (RF) chip-to-chip communication system is presented utilizing laterally resonant coupled circuits to increases maximum common-mode transient immunity and the isolation capability of galvanic isolators in a low-cost standard CMOS solution beyond the limits provided from the vertical coupling. The design provides the highest reported CMTI (common-mode transient immunity) of more than 600 kV/µs, 5 kVpk isolation, and a chip area of 0.95 mm2. In the second work, a bi-directional ultra-wideband transformer-coupled galvanic isolator is reported for the first time. The proposed design merges the functionality of two isolated channels into one magnetically coupled communication, enabling up to 50% form-factor and assembly cost reduction while achieving a simultaneously robust and state-of-art performance. This work achieves simultaneous robust, wideband, and energy-efficient performance of 300 Mb/s data rate, isolation of 7.8 kVrms, and power consumption and propagation delay of 200 pJ/b and 5 ns, respectively, in only 0.8 mm2 area. The third works studies class-E pulse-width modulated (PWM) Power amplifiers (PAs). For the first time, it presents a design technique to significantly extend the Power back-off (PBO) dynamic range of PWM PAs over the prior art. A proof-of-concept watt-level class-E PA is designed using a GaN HEMT and exhibits more than 6dB dynamic range for a 50 to 30 percent duty cycle variation. Moreover, in this work, the effects of non-idealities on performance and design of class-E power amplifiers for variable supply on and pulse-width operations are characterized and studied, including the effect of non-linear parasitic capacitances and its exploitation for enhancement of average efficiency and self-heating effects in class-E SMPAs using a new over dry-ice measurement technique was presented for this first time. The non-ideality study allows for capturing a full view of the design requirement and considerations of class-E power amplifiers and provides a window to the phenomena that lead to a mismatch between the ideal and actual performance of class-E power amplifiers and their root causes.
ContributorsJavidahmadabadi, Mahdi (Author) / Kitchen, Jennifer N (Thesis advisor) / Aberle, James (Committee member) / Bakkaloglu, Bertan (Committee member) / Burton, Richard (Committee member) / Arizona State University (Publisher)
Created2021
161729-Thumbnail Image.png
Description
Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small

Point-of-Care diagnostics is one of the most popular fields of research in bio-medicine today because of its portability, speed of response, convenience and quality assurance. One of the most important steps in such a device is to prepare and purify the sample by extracting the nucleic acids, for which small spherical magnetic particles called magnetic beads are often used in laboratories. Even though magnetic beads have the ability to isolate DNA or RNA from bio-samples in their purified form, integrating these into a microfluidic point-of-need testing kit is still a bit of a challenge. In this thesis, the possibility of integrating paramagnetic beads instead of silica-coated dynabeads, has been evaluated with respect to a point-of-need SARS-CoV-2 virus testing kit. This project is a comparative study between five different sizes of carboxyl-coated paramagnetic beads with reference to silica-coated dynabeads, and how each of them behave in a microcapillary chip in presence of magnetic fields of different strengths. The diameters and velocities of the beads have been calculated using different types of microscopic imaging techniques. The washing and elution steps of an extraction process have been recreated using syringe pump, microcapillary channels and permanent magnets, based on which those parameters of the beads have been studied which are essential for extraction behaviour. The yield efficiency of the beads have also been analysed by using these to extract Salmon DNA. Overall, furthering this research will improve the sensitivity and specificity for any low-cost nucleic-acid based point-of-care testing device.
ContributorsBiswas, Shilpita (Author) / Christen, Jennifer B (Thesis advisor) / Ozev, Sule (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2021
161759-Thumbnail Image.png
Description
This work focuses on the analysis and design of large-scale millimeter-wave andterahertz (mmWave/THz) beamforming apertures (e.g., reconfigurable reflective surfaces– RRSs). As such, the small wavelengths and ample bandwidths of these frequencies enable the development of high-spatial-resolution imaging and high-throughput wireless communication systems that leverage electrically large apertures to form high-gain steerable beams. For the rigorous

This work focuses on the analysis and design of large-scale millimeter-wave andterahertz (mmWave/THz) beamforming apertures (e.g., reconfigurable reflective surfaces– RRSs). As such, the small wavelengths and ample bandwidths of these frequencies enable the development of high-spatial-resolution imaging and high-throughput wireless communication systems that leverage electrically large apertures to form high-gain steerable beams. For the rigorous evaluation of these systems’ performance in realistic application scenarios, full-wave simulations are needed to capture all the exhibited electromagnetic phenomena. However, the small wavelengths of mmWave/THz bands lead to enormous meshes in conventional full-wave simulators. Thus, a novel numerical decomposition technique is presented, which decomposes the full-wave models in smaller domains with less meshed elements, enabling their computationally efficient analysis. Thereafter, this method is leveraged to study a novel radar configuration that employs a rotating linear antenna with beam steering capabilities to form 3D images. This imaging process requires fewer elements to carry out high-spatial-resolution imaging compared to traditional 2D phased arrays, constituting a perfect candidate in low-profile, low-cost applications. Afterward, a high-yield nanofabrication technique for mmWave/THz graphene switches is presented. The measured graphene sheet impedances are incorporated into equivalent circuit models of coplanar switches to identify the optimum mmWave/THz switch topology that would enable the development of large-scale RRSs.ii Thereon, the process of integrating the optimized graphene switches into largescale mmWave/THz RRSs is detailed. The resulting RRSs enable dynamic beam steering achieving 4-bits of phase quantization –for the first time in the known literature– eliminating the parasitic lobes and increasing the aperture efficiency. Furthermore, the devised multi-bit configurations use a single switch-per-bit topology retaining low system complexity and RF losses. Finally, single-bit RRSs are modified to offer single-lobe patterns by employing a surface randomization technique. This approach allows for the use of low-complexity single-bit configurations to suppress the undesired quantization lobes without residing to the use of sophisticated multi-bit topologies. The presented concepts pave the road toward the implementation and proliferation of large-scale reconfigurable beamforming apertures that can serve both as mmWave/THz imagers and as relays or base stations in future wireless communication applications.
ContributorsTheofanopoulos, Panagiotis (Author) / Trichopoulos, Georgios (Thesis advisor) / Balanis, Constantine (Committee member) / Aberle, James (Committee member) / Bliss, Dan (Committee member) / Groppi, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
161828-Thumbnail Image.png
Description
Modern radio frequency (RF) sensors are digital systems characterized by wide band frequency range, and capable to perform multi-function tasks such as: radar, electronic warfare (EW), and communications simultaneously on different sub-arrays. This demands careful understanding of the behavior of each sub-system and how each sub-array interacts with the others.

Modern radio frequency (RF) sensors are digital systems characterized by wide band frequency range, and capable to perform multi-function tasks such as: radar, electronic warfare (EW), and communications simultaneously on different sub-arrays. This demands careful understanding of the behavior of each sub-system and how each sub-array interacts with the others. A way to estimate and measure the active reflection coefficient (ARC) to calculate the active voltage standing wave ratio (VSWR) of multiple input multiple output (MIMO) radar when elements (or sub-arrays) are driven with different waveforms has been developed. This technique will help to understand and incorporate bounds in the design of MIMO systems and its waveforms to avoid damages by large power reflections and to improve system performance. The methodology developed consists of evaluating the active VSWR at each individual antenna element or sub-array from (1) estimates of the ARC by using computational electromagnetic (CEM) tools or (2) by directly measuring the ARC at each antenna element or sub-array. The former methodology is important especially at the design phase where trade offs between element shapes and geometrical configurations are taking place. The former methodology is expanded by directly measuring ARC using an experimental radar testbed Baseband-digital at Every Element MIMO Experimental Radar (BEEMER) system to assess the active VSWR, side-lobe levels and antenna pattern effects when different waveforms are transmitted. An optimization technique is implemented to mitigate the effects of the ARC in co-located MIMO radars by waveform design.
ContributorsColonDiaz, Nivia (Author) / Aberle, James T. (Thesis advisor) / Bliss, Daniel W. (Thesis advisor) / Diaz, Rodolfo (Committee member) / Janning, Dan (Committee member) / Arizona State University (Publisher)
Created2021