Matching Items (2)
Filtering by

Clear all filters

132493-Thumbnail Image.png
Description
The nonprofit organization, I Am Zambia, works to give supplemental education to young women in Lusaka. I Am Zambia is creating sustainable change by educating these females, who can then lift their families and communities out of poverty. The ultimate goal of this thesis was to explore and implement high

The nonprofit organization, I Am Zambia, works to give supplemental education to young women in Lusaka. I Am Zambia is creating sustainable change by educating these females, who can then lift their families and communities out of poverty. The ultimate goal of this thesis was to explore and implement high level systematic problem solving through basic and specialized computational thinking curriculum at I Am Zambia in order to give these women an even larger stepping stool into a successful future.

To do this, a 4-week long pilot curriculum was created, implemented, and tested through an optional class at I Am Zambia, available to women who had already graduated from the year-long I Am Zambia Academy program. A total of 18 women ages 18-24 chose to enroll in the course. There were a total of 10 lessons, taught over 20 class period. These lessons covered four main computational thinking frameworks: introduction to computational thinking, algorithmic thinking, pseudocode, and debugging. Knowledge retention was tested through the use of a CS educational tool, QuizIt, created by the CSI Lab of School of Computing, Informatics and Decision Systems Engineering at Arizona State University. Furthermore, pre and post tests were given to assess the successfulness of the curriculum in teaching students the aforementioned concepts. 14 of the 18 students successfully completed the pre and post test.

Limitations of this study and suggestions for how to improve this curriculum in order to extend it into a year long course are also presented at the conclusion of this paper.
ContributorsGriffin, Hadley Meryl (Author) / Hsiao, Sharon (Thesis director) / Mutsumi, Nakamura (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Computer Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
153384-Thumbnail Image.png
Description
Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught

Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught at either the high school or the college level. To remedy this, I present a new educational system intended to teach computational thinking called Genost. Genost consists of a software tool and a curriculum based on teaching computational thinking through fundamental programming structures and algorithm design. Genost's software design is informed by a review of eight major computer science educational software systems. Genost's curriculum is informed by a review of major literature on computational thinking. In two educational tests of Genost utilizing both college and high school students, Genost was shown to significantly increase computational thinking ability with a large effect size.
ContributorsWalliman, Garret (Author) / Atkinson, Robert (Thesis advisor) / Chen, Yinong (Thesis advisor) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2015