Matching Items (2)
Filtering by

Clear all filters

153384-Thumbnail Image.png
Description
Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught

Computational thinking, the creative thought process behind algorithmic design and programming, is a crucial introductory skill for both computer scientists and the population in general. In this thesis I perform an investigation into introductory computer science education in the United States and find that computational thinking is not effectively taught at either the high school or the college level. To remedy this, I present a new educational system intended to teach computational thinking called Genost. Genost consists of a software tool and a curriculum based on teaching computational thinking through fundamental programming structures and algorithm design. Genost's software design is informed by a review of eight major computer science educational software systems. Genost's curriculum is informed by a review of major literature on computational thinking. In two educational tests of Genost utilizing both college and high school students, Genost was shown to significantly increase computational thinking ability with a large effect size.
ContributorsWalliman, Garret (Author) / Atkinson, Robert (Thesis advisor) / Chen, Yinong (Thesis advisor) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2015
Description

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose

The process of learning a new skill can be time consuming and difficult for both the teacher and the student, especially when it comes to computer modeling. With so many terms and functionalities to familiarize oneself with, this task can be overwhelming to even the most knowledgeable student. The purpose of this paper is to describe the methodology used in the creation of a new set of curricula for those attempting to learn how to use the Dynamic Traffic Simulation Package with Multi-Resolution Modeling. The current DLSim curriculum currently relates information via high-concept terms and complicated graphics. The information in this paper aims to provide a streamlined set of curricula for new users of DLSim, including lesson plans and improved infographics.

ContributorsMills, Alexander (Author) / Zhou, Xuesong (Thesis director) / Chen, Yinong (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-05