Matching Items (2)
132430-Thumbnail Image.png
Description
Abstract
Matrix Factorization techniques have been proven to be more effective in recommender systems than standard user based or item based methods. Using this knowledge, Funk SVD and SVD++ are compared by the accuracy of their predictions of Twitch streamer data.

Introduction
As watching video games is becoming more popular, those interested are

Abstract
Matrix Factorization techniques have been proven to be more effective in recommender systems than standard user based or item based methods. Using this knowledge, Funk SVD and SVD++ are compared by the accuracy of their predictions of Twitch streamer data.

Introduction
As watching video games is becoming more popular, those interested are becoming interested in Twitch.tv, an online platform for guests to watch streamers play video games and interact with them. A streamer is an person who broadcasts them-self playing a video game or some other thing for an audience (the guests of the website.) The site allows the guest to first select the game/category to view and then displays currently active streamers for the guest to select and watch. Twitch records the games that a streamer plays along with the amount of time that a streamer spends streaming that game. This is how the score is generated for a streamer’s game. These three terms form the streamer-game-score (user-item-rating) tuples that we use to train out models.
The our problem’s solution is similar to the purpose of the Netflix prize; however, as opposed to suggesting a user a movie, the goal is to suggest a user a game. We built a model to predict the score that a streamer will have for a game. The score field in our data is fundamentally different from a movie rating in Netflix because the way a user influences a game’s score is by actively streaming it, not by giving it an score based off opinion. The dataset being used it the Twitch.tv dataset provided by Isaac Jones [1]. Also, the only data used in training the models is in the form of the streamer-game-score (user-item-rating) tuples. It will be known if these data points with limited information will be able to give an accurate prediction of a streamer’s score for a game. SVD and SVD++ are the baseis of the models being trained and tested. Scikit’s Surprise library in Python3 is used for the implementation of the models.
ContributorsAitken, Connor Dalton (Author) / Liu, Huan (Thesis director) / Jones, Isaac (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
158322-Thumbnail Image.png
Description
Currently, recommender systems are used extensively to find the right audience with the "right" content over various platforms. Recommendations generated by these systems aim to offer relevant items to users. Different approaches have been suggested to solve this problem mainly by using the rating history of the user or by

Currently, recommender systems are used extensively to find the right audience with the "right" content over various platforms. Recommendations generated by these systems aim to offer relevant items to users. Different approaches have been suggested to solve this problem mainly by using the rating history of the user or by identifying the preferences of similar users. Most of the existing recommendation systems are formulated in an identical fashion, where a model is trained to capture the underlying preferences of users over different kinds of items. Once it is deployed, the model suggests personalized recommendations precisely, and it is assumed that the preferences of users are perfectly reflected by the historical data. However, such user data might be limited in practice, and the characteristics of users may constantly evolve during their intensive interaction between recommendation systems.

Moreover, most of these recommender systems suffer from the cold-start problems where insufficient data for new users or products results in reduced overall recommendation output. In the current study, we have built a recommender system to recommend movies to users. Biclustering algorithm is used to cluster the users and movies simultaneously at the beginning to generate explainable recommendations, and these biclusters are used to form a gridworld where Q-Learning is used to learn the policy to traverse through the grid. The reward function uses the Jaccard Index, which is a measure of common users between two biclusters. Demographic details of new users are used to generate recommendations that solve the cold-start problem too.

Lastly, the implemented algorithm is examined with a real-world dataset against the widely used recommendation algorithm and the performance for the cold-start cases.
ContributorsSargar, Rushikesh Bapu (Author) / Atkinson, Robert K (Thesis advisor) / Chen, Yinong (Thesis advisor) / Chavez-Echeagaray, Maria Elena (Committee member) / Arizona State University (Publisher)
Created2020