Matching Items (8)
132402-Thumbnail Image.png
Description
With the advent of precision medicine, oncologists aim to target tumors that do not respond well to conventional treatment. One such therapy is oncolytic virotherapy, a treatment reliant on viral replication for tumor specific killing. Downregulation of the proteins RIP3 kinase, DAI or MLKL can result in a nonfunctional programmed

With the advent of precision medicine, oncologists aim to target tumors that do not respond well to conventional treatment. One such therapy is oncolytic virotherapy, a treatment reliant on viral replication for tumor specific killing. Downregulation of the proteins RIP3 kinase, DAI or MLKL can result in a nonfunctional programmed necroptotic cell death pathway, common amongst breast cancer and melanoma. Vaccinia virus (VACV) mutants with a nonfunctional E3 protein are able to selectively replicate in necroptosis deficient cells but not in necroptosis competent cells, making them potential candidates for oncolytic virotherapy. In order to establish the efficacy and selectivity of this treatment, an accurate tumor model is required. Eight established breast adenocarcinomas and two established melanomas were selected as potential candidates, both human and murine. A pan screening method for necroptosis was established utilizing western blot analysis for expression of aforementioned proteins following various induction methods such as IFN α or VACV infection. In addition, live cell imaging after treatment with tumor necrosis factor (TNFα) and the pan-caspase inhibitor zVAD-fmk was used as a method to visualize necroptosis pathway functionality. Based on these results, cell lines will be selected and modified to create a breast cancer model with cells that are syngeneic, differing only in expression of either RIP3. VACV can be tested for tumor volume reduction in these models to ask if RIP3 expression affects efficacy of mutant VACV as an oncolytic virus.
ContributorsKumar, Aradhana (Author) / Jacobs, Bertram (Thesis director) / McFadden, Grant (Committee member) / Borad, Mitesh (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
171382-Thumbnail Image.png
Description
Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human

Monkeypox virus (MPXV) is an orthopoxvirus that causes smallpox-like disease and has up to a 10% mortality rate, depending on the infectious strain. The global eradication of the smallpox virus has led to the decrease in smallpox vaccinations, which has led to a drastic increase in the number of human MPXV cases. MPXV has been named the most important orthopoxvirus to infect humans since the eradication of smallpox and has been the causative agent of the 2022 world-wide MPXV outbreak. Despite being highly pathogenic, MPXV contains a natural truncation at the N-terminus of its E3 homologue. Vaccinia virus (VACV) E3 protein has two domains: an N- terminus Z-form nucleic acid binding domain (Z-BD) and a C-terminus double stranded RNA binding domain (dsRBD). Both domains are required for pathogenesis, interferon (IFN) resistance, and protein kinase R (PKR) inhibition. The N-terminus is required for evasion of Z-DNA binding protein 1 (ZBP1)-dependent necroptosis. ZBP1 binding to Z- form deoxyribonucleic acid/ribonucleic acid (Z-DNA/RNA) leads to activation of receptor-interacting protein kinase 3 (RIPK3) leading to mixed lineage kinase domain- like (MLKL) phosphorylation, aggregation and cell death. This study investigated how different cell lines combat MPXV infection and how MPXV has evolved ways to circumvent the host response. MPXV is shown to inhibit necroptosis in L929 cells by degrading RIPK3 through the viral inducer of RIPK3 degradation (vIRD) and by inhibiting MLKL aggregation. Additionally, the data shows that IFN treatment efficiently inhibits MPXV replication in a ZBP1-, RIPK3-, and MLKL- dependent manner, but independent of necroptosis. Also, the data suggests that an IFN inducer with a pancaspase or proteasome inhibitor could potentially be a beneficial treatment against MPXV infections. Furthermore, it reveals a link between PKR and pathogen-induced necroptosis that has not been previously described.
ContributorsWilliams, Jacqueline (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Varsani, Arvind (Committee member) / Arizona State University (Publisher)
Created2022
168280-Thumbnail Image.png
Description
Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start

Poxviruses such as monkeypox virus (MPXV) are emerging zoonotic diseases. Compared to MPXV, Vaccinia virus (VACV) has reduced pathogenicity in humans and can be used as a partially protective vaccine against MPXV. While most orthopoxviruses have E3 protein homologues with highly similar N-termini, the MPXV homologue, F3, has a start codon mutation leading to an N-terminal truncation of 37 amino acids. The VACV protein E3 consists of a dsRNA binding domain in its C-terminus which must be intact for pathogenicity in murine models and replication in cultured cells. The N-terminus of E3 contains a Z-form nucleic acid (ZNA) binding domain and is also required for pathogenicity in murine models. Poxviruses produce RNA transcripts that extend beyond the transcribed gene which can form double-stranded RNA (dsRNA). The innate immune system easily recognizes dsRNA through proteins such as protein kinase R (PKR). After comparing a vaccinia virus with a wild-type E3 protein (VACV WT) to one with an E3 N-terminal truncation of 37 amino acids (VACV E3Δ37N), phenotypic differences appeared in several cell lines. In HeLa cells and certain murine embryonic fibroblasts (MEFs), dsRNA recognition pathways such as PKR become activated during VACV E3Δ37N infections, unlike VACV WT. However, MPXV does not activate PKR in HeLa or MEF cells. Additional investigation determined that MPXV produces less dsRNA than VACV. VACV E3Δ37N was made more similar to MPXV by selecting mutants that produce less dsRNA. By producing less dsRNA, VACV E3Δ37N no longer activated PKR in HeLa or MEF cells, thus restoring the wild-type phenotype. Furthermore, in other cell lines such as L929 (also a murine fibroblast) VACV E3Δ37N, but not VACV WT infection leads to activation of DNA-dependent activator of IFN-regulatory factors (DAI) and induction of necroptotic cell death. The same low dsRNA mutants demonstrate that DAI activation and necroptotic induction is independent of classical dsRNA. Finally, investigations of spread in an animal model and replication in cell lines where both the PKR and DAI pathways are intact determined that inhibition of both pathways is required for VACV E3Δ37N to replicate.
ContributorsCotsmire, Samantha (Author) / Jacobs, Bertram L (Thesis advisor) / Varsani, Arvind (Committee member) / Hogue, Brenda (Committee member) / Haydel, Shelley (Committee member) / Arizona State University (Publisher)
Created2021
163463-Thumbnail Image.png
Description

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases

Annually approximately 1.5 million Americans suffer from a traumatic brain injury (TBI) increasing the risk of developing a further neurological complication later in life [1-3]. The molecular drivers of the subsequent ensuing pathologies after the initial injury event are vast and include signaling processes that may contribute to neurodegenerative diseases such as Alzheimer’s Disease (AD). One such molecular signaling pathway that may link TBI to AD is necroptosis. Necroptosis is an atypical mode of cell death compared with traditional apoptosis, both of which have been demonstrated to be present post-TBI [4-6]. Necroptosis is initiated by tissue necrosis factor (TNF) signaling through the RIPK1/RIPK3/MLKL pathway, leading to cell failure and subsequent death. Prior studies in rodent TBI models report necroptotic activity acutely after injury, within 48 hours. Here, the study objective was to recapitulate prior data and characterize MLKL and RIPK1 cortical expression post-TBI with our lab’s controlled cortical impact mouse model. Using standard immunohistochemistry approaches, it was determined that the tissue sections acquired by prior lab members were of poor quality to conduct robust MLKL and RIPK1 immunostaining assessment. Therefore, the thesis focused on presenting the staining method completed. The discussion also expanded on expected results from these studies regarding the spatial distribution necroptotic signaling in this TBI model.

ContributorsHuber, Kristin (Author) / Stabenfeldt, Sarah (Thesis director) / Brafman, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
156619-Thumbnail Image.png
Description
Cell death is a powerful tool through which organisms can inhibit the spread of viruses by preventing their replication. In this work, I used viral and chemical stressors to elucidate the mechanisms by which one anti-viral system might be activated over another, focusing on the programmable death pathway necroptosis and

Cell death is a powerful tool through which organisms can inhibit the spread of viruses by preventing their replication. In this work, I used viral and chemical stressors to elucidate the mechanisms by which one anti-viral system might be activated over another, focusing on the programmable death pathway necroptosis and Protein Kinase R (PKR). PKR can detect viral dsRNA and trigger antiviral effects such as cessation of translation and induction of programmed death. Necroptosis is a rapid cellular death that can be induced via sensors such as DNA-dependent activator of IFN-regulatory factors (DAI), also known as Z-DNA-binding protein 1 (ZBP1). DAI contains a Z-form nucleic acid (ZNA) binding domain. E3, the primary vaccinia virus (VACV) interferon resistance protein, contains a similar domain in its amino terminus. We have previously reported this domain to be necessary for the inhibition of both PKR activation and DAI/ZBP1-mediated necroptosis.

Monkeypox virus is a reemerging human pathogen. Despite a partial amino-terminal deletion in its E3 homolog, it does not activate PKR. In chapter 2, I show that MPXV produces less dsRNA than VACV, which could explain how the virus avoids activating PKR.

The amino-terminus of vaccinia is associated with ZNA binding, inhibition of PKR, and inhibition of necroptosis. To determine the roles of PKR inhibition and ZNA binding in necroptosis inhibition, I characterized the VACV mutants Za(ADAR1)-E3, which binds ZNA but does not inhibit PKR, and E3:Y48A, which cannot bind ZNA. I found that while Za(ADAR1)-E3 fails to induce necroptosis, E3:Y48A does not activate PKR but does induce necroptosis. This suggests that Z-form nucleic acid binding is not necessary for vaccinia E3-mediated inhibition of PKR, nor is the inhibition of PKR sufficient for the inhibition of necroptosis.

Finally, all known ZNA-binding proteins have immune functions and home to stress granules. I asked if stress granule formation alone could lead to necroptosis. I found that in L929 cells sodium arsenite, a known inducer of stress granules, could trigger DAI-dependent necroptosis. This suggests that DAI/ZBP1 is not necessarily a sensor of viral ligands but perhaps is a sensor of stress signals brought about by infection.
ContributorsJohnson, Brian Patrick (Author) / Jacobs, Bertram L (Thesis advisor) / Blattman, Joseph N (Committee member) / Langland, Jeffrey O (Committee member) / Stout, Valerie G (Committee member) / Arizona State University (Publisher)
Created2018
158395-Thumbnail Image.png
Description
Since the molecular biology revolution in the 1980s, ease of gene editing had led to the resurgence of Oncolytic Virotherapy. Countless viruses have been engineered yet only three are approved for clinical use worldwide, with only one being approved by the U.S Food and Drug Administration (FDA). Vaccinia virus (VACV)

Since the molecular biology revolution in the 1980s, ease of gene editing had led to the resurgence of Oncolytic Virotherapy. Countless viruses have been engineered yet only three are approved for clinical use worldwide, with only one being approved by the U.S Food and Drug Administration (FDA). Vaccinia virus (VACV) has a large genome, contains many immune evasion genes and has been thoroughly studied, making it a popular candidate for an oncolytic platform. VACV mutants with deletions in the E3 immune evasion protein have been shown to have oncolytic efficacy but the mechanism of tumor selectivity has not been fully elucidated. These mutants have been shown to be regulated by the necroptosis pathway, a pathway that has been shown to be deficient in certain cancers. Using a pan-cancer screening method that combines dye exclusion assays, western blot analysis, and viral growth curve, the role of necroptosis in regulating VACV replication and oncolytic efficacy in cancer was further characterized. Results demonstrate a preliminary correlation between necroptosis, viral replication, and oncolytic efficacy. This correlation is clearest in breast cancer and melanomas yet may apply to other cancer subgroups. This data was also used to guide the development of a receptor-interacting protein kinase 3 (RIP3) matched pair mouse model in the E0771 mouse breast cancer line which can be used to further study the role of necroptosis and oncolytic efficacy in vivo. Understanding the contribution necroptosis plays in oncolytic efficacy can guide to design enhance the design of clinical trials to test VACV E3L mutants and may lead to better efficacy in humans and an improvement in clinical oncology.
ContributorsKasimsetty, Aradhana (Author) / Jacobs, Bertram L (Thesis advisor) / McFadden, Douglas G (Committee member) / Borad, Mitesh (Committee member) / Arizona State University (Publisher)
Created2020
161269-Thumbnail Image.png
Description
Environmental stressors can perturb cellular homeostasis. Cells activate an integrated stress response that will alleviate the effects of the ongoing stress. Stress-activated protein kinases function to phosphorylate the eukaryotic translation initiation factor, eIF2α, which results in inhibition of translation of house-keeping genes. Following these events, formation of cytoplasmic messenger ribonucleoprotein

Environmental stressors can perturb cellular homeostasis. Cells activate an integrated stress response that will alleviate the effects of the ongoing stress. Stress-activated protein kinases function to phosphorylate the eukaryotic translation initiation factor, eIF2α, which results in inhibition of translation of house-keeping genes. Following these events, formation of cytoplasmic messenger ribonucleoprotein complexes, known as stress granules, will take place. Stress granules typically have a pro-survival function. These studies demonstrate that assembly of stress granules can also lead to necroptosis. Necroptosis is a caspase-independent, receptor-interacting protein kinase 3 (RIPK3)-dependent cell death pathway executed by mixed lineage kinase domain-like (MLKL) protein. Cellular stress is induced using arsenite (oxidative stress) or by infection with vaccinia virus (VACV) E3 protein Z-DNA-binding domain mutant, VACV-E3LΔ83N. In both cases, RIPK3-dependent death was observed in interferon (IFN)-primed L929 cells. This death led to phosphorylation and trimerization of MLKL, indicative of necroptosis. Necroptosis induced by oxidative stress and VACV-E3LΔ83N infection was dependent on the host Z-form nucleic acid sensor, DNA-dependent activator of IFN-regulatory factors (DAI), as it was inhibited in DAI-deficient L929 cells. Under both cellular stresses, DAI associated with RIPK3 and formed high-molecular-weight complexes, consistent with formation of the necrosomes. DAI localized into stress granules during necroptosis induced by arsenite and the mutant virus, and the necrosomes formed only in presence of stress granule assembly. The significance of stress granules for cellular stress-induced necroptosis was demonstrated using knock-out (KO) cell lines unable to form granules: T cell-restricted intracellular antigen 1 (TIA-1) KO MEF cells and Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1/2) KO U2OS cells. Necroptosis was inhibited in absence of stress granule formation as no cell death or activation of MLKL was observed in the knock-out cell lines following arsenite treatment or VACV-E3LΔ83N infection. Furthermore, wild-type VACV was able to inhibit stress granule assembly, which coincided with the virus ability to inhibit necroptosis. These studies have led to a model of Z-form nucleic acids being involved in activation of the stress granule-mediated necroptosis following induction by environmental stressors. These results have significance for understanding the etiology of human diseases and the antiviral innate immunity.
ContributorsSzczerba, Mateusz Bartlomiej (Author) / Jacobs, Bertram L (Thesis advisor) / Langland, Jeffrey (Committee member) / Lake, Douglas (Committee member) / Chen, Qiang (Committee member) / Arizona State University (Publisher)
Created2021
161439-Thumbnail Image.png
Description
Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving receptor-interacting serine-threonine protein kinase 3 (RIPK3). In response to vaccinia virus infection, necroptosis is induced through DNA-induced

Programmed cell death plays an important role in a variety of processes that promote the survival of the host organism. Necroptosis, a form of programmed cell death, occurs through a signaling pathway involving receptor-interacting serine-threonine protein kinase 3 (RIPK3). In response to vaccinia virus infection, necroptosis is induced through DNA-induced activator of interferon (DAI), which activates RIPK3, leading to death of the cell and thereby inhibiting further viral replication in host cells. DAI also localizes into stress granules, accumulations of mRNAs that have stalled in translation due to cellular stress. The toxin arsenite, a canonical inducer of stress granule formation, was used in this project to study necroptosis. By initiating necroptosis with arsenite and vaccinia virus, this research project investigated the roles of necroptosis proteins and their potential localization into stress granules. The two aims of this research project were to determine whether stress granules are important for arsenite- and virus-induced necroptosis, and whether the proteins DAI and RIPK3 localize into stress granules. The first aim was investigated by establishing a DAI and RIPK3 expression system in U2OS cells; arsenite treatment or vaccinia virus infection was then performed on the U2OS cells as well as on U2OSΔΔG3BP1/2 cells, which are not able to form stress granules. The second aim was carried out by designing fluorescent tagging for the necroptosis proteins in order to visualize protein localization with fluorescent microscopy. The results show that arsenite induces DAI-dependent necroptosis in U2OS cells and that this arsenite-induced necroptosis likely requires stress granules. In addition, the results show that vaccinia virus induces DAI-dependent necroptosis that also likely requires stress granules in U2OS cells. Furthermore, a fluorescent RIPK3 construct was created that will allowfor future studies on protein localization during necroptosis and can be used to answer questions regarding localization of necroptosis proteins into stress granules. This project therefore contributes to a greater understanding of the roles of DAI and RIPK3 in necroptosis, as well as the roles of stress granules in necroptosis, both of which are important in research regarding viral infection and cellular stress.
ContributorsGogerty, Carolina (Author) / Jacobs, Bertram (Thesis advisor) / Langland, Jeffrey (Committee member) / Jentarra, Garilyn (Committee member) / Arizona State University (Publisher)
Created2021