Matching Items (18)
149944-Thumbnail Image.png
Description
A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood nonlinear dependence of D/H on sample size, for which any

A new analytical method is proposed for measuring the deuterium to hydrogen ratio (D/H) of non-stoichiometric water in hydrous minerals via pyrolysis facilitated gas-chromatography - isotope ratio mass spectrometry (GC-IRMS). Previously published analytical methods have reported a poorly understood nonlinear dependence of D/H on sample size, for which any accurate correction is difficult. This sample size effect been variously attributed to kinetic isotope fractionation within the mass spectrometer and peripheral instruments, ion source linearity issues, and an unstable H_3^+-factor or incorrect H_3^+-factor calculations. The cause of the sample size effect is here identified by examinations of individual chromatograms as well as bulk data from chromatographic peaks. It is here determined that it is primarily an artifact of the calculations employed by the manufacturer's computer program, used to both monitor the functions of the mass spectrometer and to collect data. Ancillary causes of the sample size effect include a combination of persistent background interferences and chromatographic separation of the isotopologues of molecular hydrogen. Previously published methods are evaluated in light of these findings. A new method of H_3^+-factor and D/H calculation is proposed which makes portions of the Isodat software as well as other published calculation methods unnecessary. Using this new method, D/H is measured in non-stoichiometric water in chert from the Cretaceous Edwards Group, Texas, as well as the Precambrian Kromberg Formation, South Africa, to assess hydrological conditions as well as to estimate the maximum average surface temperature during precipitation of the chert. Data from Cretaceous chert are consistent with previously published data and interpretations, based upon conventional analyses of large samples. Data from Precambrian chert are consistent with maximum average surface temperatures approaching 65°C during the Archean, instead of the much lower temperatures derived from erroneous methods of sample preparation and analysis. D/H is likewise measured in non-stoichiometric water in silicified basalt from the Precambrian Hooggenoeg Complex, South Africa. Data are shown to be consistent with D/H of the Archean ocean similar to present day values.
ContributorsSheehan, Michael Robert (Author) / Knauth, Leroy P (Thesis advisor) / Anbar, Ariel (Committee member) / Farmer, Jack (Committee member) / Arizona State University (Publisher)
Created2011
137527-Thumbnail Image.png
DescriptionHydrogen diffusion causes brittleness and cracking at stresses below the yield strength of susceptible metals. The effects of hydrostatic loading on the rate of hydrogen diffusion is relatively unknown. A study of these effects will provide a better understanding in the design process for accounting for the resulting hydrogen embrittlement.
ContributorsWalker, Jordan Scot (Author) / Solanki, Kiran (Thesis director) / Oswald, Jay (Committee member) / Adlakha, Ilaksh (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2013-05
137040-Thumbnail Image.png
Description
Amino acid analysis (AAA) of egg white lysozyme and bovine Achilles tendon collagen was performed using 1H solution-state nuclear magnetic resonance (NMR) spectroscopy. The proteins were hydrolyzed in 6M HCL with and without 0.02% phenol at 110\u00B0C for 24, 48, and 72 hours. For both proteins, 18 of 20 amino

Amino acid analysis (AAA) of egg white lysozyme and bovine Achilles tendon collagen was performed using 1H solution-state nuclear magnetic resonance (NMR) spectroscopy. The proteins were hydrolyzed in 6M HCL with and without 0.02% phenol at 110\u00B0C for 24, 48, and 72 hours. For both proteins, 18 of 20 amino acids were characterized including hydroxyproline and hydroxylysine in collagen, using 1-dimensional (1D) and 2-dimensional (2D) NMR spectroscopy experiments. Errors ranging from <1% to 8% were seen in treatments with and without phenol. Both proteins could be correctly identified within their own species using the online database search AACompIdent. The proposed approach is a simple analytical technique that does not require the use of column separation or amino acid derivatization prior to compositional analysis.
ContributorsBaranowski, Michael Edward (Author) / Yarger, Jeffery (Thesis director) / Holland, Gregory (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / Herberger Institute for Design and the Arts (Contributor)
Created2014-05
134434-Thumbnail Image.png
Description
Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments

Hydrogen is a key indicator of microbial activity in soils/sediments and groundwater because of its role as an electron donor for reducing sulfate and nitrate and carrying out other metabolic processes. The goal of this study was to quantitatively measure the total biological hydrogen demand (TBHD) of soils and sediments in anaerobic environments. We define the total biological hydrogen demand as the sum of all electron acceptors that can be used by hydrogen-oxidizing microorganisms. Three sets of anaerobic microcosms were set up with different soils/sediments, named Carolina, Garden, and ASM. The microcosms included 25g of soil/sediment and 75 mL of anaerobic medium. 10 mL of hydrogen were pulse-fed for 100 days. Hydrogen consumption and methane production were tracked using gas chromatography. Chemical analysis of each soil was performed at the beginning of the experiment to determine the concentration of electron acceptors in the soils/sediments, including nitrate, sulfate, iron and bicarbonate. An analysis of the microbial community was done at t = 0 and at the end of the 100 days to examine changes in the microbial community due to the metabolic processes occurring as hydrogen was consumed. Carolina consumed 9810 43 mol of hydrogen and produced 19,572 2075 mol of methane. Garden consumed 4006 33 mol of hydrogen and produced 7,239 543 mol of methane. Lastly, ASM consumed 1557 84 mol of hydrogen and produced 1,325 715 mol of methane. I conclude that the concentration of bicarbonate initially present in the soil had the most influence over the hydrogen demand and microbial community enrichment. To improve this research, I recommend that future studies include a chemical analysis of final soil geochemistry conditions, as this will provide with a better idea of what pathway the hydrogen is taking in each soil.
ContributorsLuna Aguero, Marisol (Author) / Krajmalnik-Brown, Rosa (Thesis director) / Delgado, Anca (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
154097-Thumbnail Image.png
Description
In the United States, 95% of the industrially produced hydrogen is from natural gas reforming. Membrane-based techniques offer great potential for energy efficient hydrogen separations. Pd77Ag23 is the bench-mark metallic membrane material for hydrogen separation at high temperatures. However, the high cost of palladium limits widespread application. Amorphous metals with

In the United States, 95% of the industrially produced hydrogen is from natural gas reforming. Membrane-based techniques offer great potential for energy efficient hydrogen separations. Pd77Ag23 is the bench-mark metallic membrane material for hydrogen separation at high temperatures. However, the high cost of palladium limits widespread application. Amorphous metals with lower cost elements are one alternative to replace palladium-based membranes. The overall aim of this thesis is to investigate the potential of binary and ternary amorphous metallic membranes for hydrogen separation. First, as a benchmark, the influence of surface state of Pd77Ag23 crystalline metallic membranes on the hydrogen permeability was investigated. Second, the hydrogen permeability, thermal stability and mechanical properties of Cu-Zr and Ni60Nb35M5 (M=Sn, Ti and Zr) amorphous metallic membranes was evaluated.

Different heat treatments were applied to commercial Pd77Ag23 membranes to promote surface segregation. X-ray photoelectron spectroscopy (XPS) analysis indicates that the membrane surface composition changed after heat treatment. The surface area of all membranes increased after heat treatment. The higher the surface Pd/(Pd+Ag) ratio, the higher the hydrogen permeability. Surface carbon removal and surface area increase cannot explain the observed permeability differences.

Previous computational modeling predicted that Cu54Zr46 would have high hydrogen permeability. Amorphous metallic Cu-Zr (Zr=37, 54, 60 at. %) membranes were synthesized and investigated. The surface oxides may result in the lower experimental hydrogen permeability lower than that predicted by the simulations. The permeability decrease indicates that the Cu-Zr alloys crystallized in less than two hours during the test (performed at 300 °C) at temperatures below the glass transition temperature. This original experimental results show that thermal stability of amorphous metallic membranes is critical for hydrogen separation applications.

The hydrogen permeability of Ni60Nb35M5 (M=Sn, Ti and Zr) amorphous metallic membranes was investigated. Nanoindentation shows that the Young’s modulus and hardness increased after hydrogen permeability test. The structure is maintained amorphous after 24 hours of hydrogen permeability testing at 400°C. The maximum hydrogen permeability of three alloys is 10-10 mol m-1 s-1 Pa-0.5. Though these alloys exhibited a slight hydrogen permeability decreased during the test, the amorphous metallic membranes were thermally stable and did not crystalize.
ContributorsLai, Tianmiao (Author) / Lind, Mary Laura (Thesis advisor) / Lin, Jerry (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2015
154875-Thumbnail Image.png
Description
Layers of intrinsic hydrogenated amorphous silicon and amorphous silicon carbide

were prepared on a polished, intrinsic crystalline silicon substrate via plasma-enhanced chemical vapor deposition to simulate heterojunction device relevant stacks of various materials. The minority carrier lifetime, optical band gap and FTIR spectra were observed at incremental stages of thermal annealing.

Layers of intrinsic hydrogenated amorphous silicon and amorphous silicon carbide

were prepared on a polished, intrinsic crystalline silicon substrate via plasma-enhanced chemical vapor deposition to simulate heterojunction device relevant stacks of various materials. The minority carrier lifetime, optical band gap and FTIR spectra were observed at incremental stages of thermal annealing. By observing the changes in the lifetimes the sample structure responsible for the most thermally robust surface passivation could be determined. These results were correlated to the optical band gap and the position and relative area of peaks in the FTIR spectra related to to silicon-hydrogen bonds in the layers. It was found that due to an increased presence of hydrogen bonded to silicon at voids within the passivating layer, hydrogenated amorphous silicon carbide at the interface of the substrate coupled with a hydrogenated amorphous silicon top layer provides better passivation after high temperature annealing than other device structures.
ContributorsJackson, Alec James (Author) / Holman, Zachary (Thesis advisor) / Bertoni, Mariana (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2016
155327-Thumbnail Image.png
Description
This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to

This thesis is devoted to the theoretical and computational study of electron transport in molecular junctions where one or more hydrogen bonds are involved in the process. While electron transport through covalent bonds has been extensively studied, in recent work the focus has been shifted towards hydrogen-bonded systems due to their ubiquitous presence in biological systems and their potential in forming nano- junctions between molecular electronic devices and biological systems.

This analysis allows us to significantly expand our comprehension of the experimentally observed result that the inclusion of hydrogen bonding in a molecular junc- tion significantly impacts its transport properties, a fact that has important implications for our understanding of transport through DNA, and nano-biological interfaces in general. In part of this work I have explored the implications of quasiresonant transport in short chains of weakly-bonded molecular junctions involving hydrogen bonds. I used theoretical and computational analysis to interpret recent experiments and explain the role of Fano resonances in the transmission properties of the junction.

In a different direction, I have undertaken the study of the transversal conduction through nucleotide chains that involve a variable number of different hydrogen bonds, e.g. NH···O, OH···O, and NH···N, which are the three most prevalent hydrogen bonds in biological systems and organic electronics. My effort here has fo- cused on the analysis of electronic descriptors that allow a simplified conceptual and computational understanding of transport properties. Specifically, I have expanded our previous work where the molecular polarizability was used as a conductance de- scriptor to include the possibility of atomic and bond partitions of the molecular polarizability. This is important because it affords an alternative molecular descrip- tion of conductance that is not based on the conventional view of molecular orbitals as transport channels. My findings suggest that the hydrogen-bond networks are crucial in understanding the conductance of these junctions.

A broader impact of this work pertains the fact that characterizing transport through hydrogen bonding networks may help in developing faster and cost-effective approaches to personalized medicine, to advance DNA sequencing and implantable electronics, and to progress in the design and application of new drugs.
ContributorsWimmer, Michael (Author) / Mujica, Vladimiro (Thesis advisor) / Wolf, George (Committee member) / Chizmeshya, Andrew (Committee member) / Arizona State University (Publisher)
Created2017
166358-Thumbnail Image.png
Description

Hybrid metalloproteins incorporating synthetic organometallic active sites within a protein scaffold are being researched as viable catalysts for the production of hydrogen fuel. Our group and others have shown that the incorporation of cobalt protoporphyrin IX in cytochrome b₅₆₂ yields artificial enzymes that reduce protons to molecular hydrogen in the

Hybrid metalloproteins incorporating synthetic organometallic active sites within a protein scaffold are being researched as viable catalysts for the production of hydrogen fuel. Our group and others have shown that the incorporation of cobalt protoporphyrin IX in cytochrome b₅₆₂ yields artificial enzymes that reduce protons to molecular hydrogen in the presence of photoinductive light and photosensitizers. Using random mutagenesis via error-prone PCR we have created a library of mutants to use in directed evolution to optimize hydrogen catalysis, though a challenge in this project is that testing individual variants by gas chromatography is not feasible on a large scale. For this reason, we are developing a gasochromic, hydrogen assay that is based on the interaction of molecular hydrogen with tungsten trioxide with a palladium catalyst. Initially, results show this assay to be qualitatively accurate between trials; however, its application in screening remains a challenge.

ContributorsGutierrez, Elijah (Author) / Ghirlanda, Giovana (Thesis director) / Mills, Jeremy (Committee member) / Redding, Kevin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor)
Created2022-05
168322-Thumbnail Image.png
Description
Past experiments have revealed several unusual properties about interstitial hydrogen atoms in niobium. Absorption isotherms showed that niobium absorbs a large amount of hydrogen without changing its crystal structure. These isotherms also revealed that the interactions between hydrogen atoms in niobium are a combination of long-range attraction and short-range repulsion

Past experiments have revealed several unusual properties about interstitial hydrogen atoms in niobium. Absorption isotherms showed that niobium absorbs a large amount of hydrogen without changing its crystal structure. These isotherms also revealed that the interactions between hydrogen atoms in niobium are a combination of long-range attraction and short-range repulsion and exhibit many-body characteristics. Other experiments reported the facile thermal diffusion of hydrogen and deuterium in niobium. Contrary to the classical theory of diffusion, these experiments revealed a break in the activation energy of hydrogen diffusion at low temperatures, but no such break was reported for deuterium. Finally, experiments report a phenomenon called electromigration, where hydrogen atoms inside niobium respond to weak electric fields as if they had a positive effective charge. These experimental results date back to when tools like density functional theory (DFT) and modern high-performance computing abilities did not exist. Therefore, the current understanding of these properties is primarily based on inferences from experimental results. Understanding these properties at a deeper level, besides being scientifically important, can profoundly affect various applications involving hydrogen separation and transport. The high-level goal of this work is to use first-principles methods to explain the discussed properties of interstitial hydrogen in niobium. DFT calculations were used to study hydrogen atoms' site preference in niobium and its effect on the cell shape and volume of the host cell. The nature and origin of the interactions between hydrogen atoms were studied through interaction energy, structural, partial charge, and electronic densities of state analysis. A phenomenological model with fewer parameters than traditional models was developed and fit to the experimental absorption data. Thermodynamic quantities such as the enthalpy and entropy of hydrogen dissolution in niobium were derived from this model. The enthalpy of hydrogen dissolution in niobium was also calculated using DFT by sampling different geometric configurations and performing an ensemble-based averaging. Further work is required to explain the observed isotope effects for hydrogen diffusion in niobium and the electromigration phenomena. Applications of the niobium-hydrogen system require studying hydrogen's behavior on niobium's surface.
ContributorsRamcahandran, Arvind (Author) / Lackner, Klaus S. (Thesis advisor) / Zhuang, Houlong (Thesis advisor) / Muhich, Christopher (Committee member) / Singh, Arunima (Committee member) / Arizona State University (Publisher)
Created2021
189317-Thumbnail Image.png
Description
The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only

The conversion of H2S enables the recycling of a waste gas into a potential source of hydrogen at a lower thermodynamic energy cost as compared to water splitting. However, studies on the photocatalytic decomposition of H2S focus on traditional deployment of catalyst materials to facilitate this conversion, and operation only when a light source is available. In this study, the efficacy of Direct Ink Written (DIW) luminous structures for H2S conversion has been investigated, with the primary objective of sustaining H2S conversion when a light source has been terminated. Additionally, as a secondary objective, improving light distribution within monoliths for photocatalytic applications is desired. The intrinsic illumination of the 3D printed monoliths developed in this work could serve as an alternative to monolith systems that employ light transmitting fiber optic cables that have been previously proposed to improve light distribution in photocatalytic systems. The results that were obtained demonstrate that H2S favorable adsorbents, a wavelength compatible long afterglow phosphor, and a photocatalyst can form viscoelastic inks that are printable into DIW luminous monolithic contactors. Additionally, rheological, optical and porosity analyses conducted, provide design guidelines for future studies seeking to develop DIW luminous monoliths from compatible catalyst-phosphor pairs. The monoliths that were developed demonstrate not only improved conversion when exposed to light, but more significantly, extended H2S conversion from the afterglow of the monoliths when an external light source was removed. Lastly, considering growing interests in attaining a global circular economy, the techno-economic feasibility of a H2S-CO2 co-utilization plant leveraging hydrogen from H2S photocatalysis as a feed source for a downstream CO2 methanation plant has been assessed. The work provides preliminary information to guide future chemical kinetic design characteristics that are important to strive for if using H2S as a source of hydrogen in a CO2 methanation facility.
ContributorsAbdullahi, Adnan (Author) / Andino, Jean (Thesis advisor) / Phelan, Patrick (Thesis advisor) / Bhate, Dhruv (Committee member) / Wang, Robert (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2023