Matching Items (2)
132369-Thumbnail Image.png
Description
Research studies on improving Automated Driving Systems (ADS) have focused mainly on enhancing safety, through the development of more sophisticated sensors that have the ability to detect objects promptly. Safety is indeed a priority especially when the public has raised concerns regarding unmanned vehicles failing to make informed decisions in

Research studies on improving Automated Driving Systems (ADS) have focused mainly on enhancing safety, through the development of more sophisticated sensors that have the ability to detect objects promptly. Safety is indeed a priority especially when the public has raised concerns regarding unmanned vehicles failing to make informed decisions in unforeseen situations, for example, the Uber Automated Vehicle (AV) crash that happened in Arizona, in 2018 (Griggs & Wakabayashi, 2018). However, one question still remains suppositious: How will the continuous development of AVs impact carbon emissions and energy consumption? Since many automakers claim that automated driving is part of the future of mobility, there is a possibility that automated driving could promote the use of alternative clean fuels like electric batteries and support further travels with the least amount of energy. Therefore, this paper discusses how new ADS technologies with energy-saving benefits, will enable multiple levels of vehicle autonomy to perform efficiently and cause less environmental impacts. In addition, this paper discusses prospective developments in other industries, that could emerge to compliment the next generation ADS technologies and also help decrease the global energy demand that is projected to increase by some 28 percent between now and the year 2040 (“EIA projects 28% increase in world energy use by 2040 - Today in Energy - U.S. Energy Information Administration (EIA),” n.d.)
ContributorsSinyangwe, Stephano Kapya (Author) / Wishart, Jeffrey (Thesis director) / Yan, Chen (Committee member) / Engineering Programs (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
170043-Thumbnail Image.png
Description

We analyze current approaches to carbon accounting for removed carbon sold on carbon markets, focusing on carbon crediting under the framing of a remaining carbon budget, the issue of durability, and approaches to accounting methodologies. We explore the topic of mixing carbon with other problems in developing carbon accounting methodologies

We analyze current approaches to carbon accounting for removed carbon sold on carbon markets, focusing on carbon crediting under the framing of a remaining carbon budget, the issue of durability, and approaches to accounting methodologies. We explore the topic of mixing carbon with other problems in developing carbon accounting methodologies and highlight the open policy questions. We conclude with a suggested framework for accounting for carbon removal accounting that simplifies climate action and enables a world with negative carbon emissions.

ContributorsArcusa, Stéphanie (Author) / Lackner, Klaus (Author) / Page, Robert (Author) / Sriramprasad, Vishrudh (Author) / Hagood, Emily (Author) / Center for Negative Carbon Emissions (Contributor)
Created2022-11-01