Matching Items (2)
Filtering by

Clear all filters

132294-Thumbnail Image.png
Description
Microplastics are defined as small pieces of plastics that are less than five millimeters in size. These microplastics can vary in their appearance, are known to be harmful to aquatic life and can threaten life cycles of marine organisms because of their chemical make-up and the toxic additives used in

Microplastics are defined as small pieces of plastics that are less than five millimeters in size. These microplastics can vary in their appearance, are known to be harmful to aquatic life and can threaten life cycles of marine organisms because of their chemical make-up and the toxic additives used in their manufacture. Although small in size, it is hypothesized that microplastics can serve as an example of how human activities can alter ecosystems near and far. To investigate the implications and determine the potential impact of microplastics on a protected atoll’s ecosystems, red-footed booby (Sula sula) guano samples from six locations on Palmyra Atoll were acquired from North Carolina State University via The Nature Conservancy and were inspected for the presence of microplastics. Each of the guano samples were weighed and prepared via wet oxidation. Microplastic fibers were detected via stereoscope microscopy and analyzed for chemical composition via Raman spectroscopy. All six sampling locations within Palmyra Atoll contained microplastic fibers identified as polyethylene terephthalate, with North-South Causeway and Eastern Island having the highest average number of microplastic fibers found per gram of guano sample (n = 0.611). These data provide evidence that seabirds can serve as vectors for the spread of microplastic pollution. This research lends context to the widespread impact of plastic pollution and states possible implications of its presence in delicate ecosystems.
ContributorsAnderson, Alyssa Cerise (Author) / Lisenbee, Cayle (Thesis director) / Halden, Rolf (Committee member) / Rolsky, Charles (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132490-Thumbnail Image.png
Description
Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which is insufficient to cure stage four cancers[3]. Salmonella enteric has

Colorectal cancer is the third most common type of cancer that affects both men and women and the second leading cause of death in cancer related deaths[1, 2]. The most common form of treatment is chemotherapy followed by radiation, which is insufficient to cure stage four cancers[3]. Salmonella enteric has long been shown to have inherent tumor targeting properties and have been able to penetrate and exist in all aspects of the tumor environment, something that chemotherapy is unable to achieve. This lab has developed a genetically modified Salmonella typhimurium (GMS) which is able to deliver DNA vaccines or synthesized proteins directly to tumor sites. These GMS strains have been used to deliver human TNF-related apoptosis inducing ligand (TRAIL) protein directly to tumor sites, but expression level was limited. It is the hope of the experiment that codon optimization of TRAIL to S. typhimurium preferred codons will lead to increased TRAIL expression in the GMS. For preliminary studies, BALB/c mice were subcutaneously challenged with CT-26 murine colorectal cancer cells and treated with an intra-tumor injection with either PBS, strain GMS + PCMV FasL (P2), or strain GMS + Pmus FasL). APC/CDX2 mutant mice were also induced to develop human colon polyps and treated with either PBS, strain GMS + vector (P1), P2, or P3. The BALB/c mouse showed statistically significant levels of decreased tumor size in groups treated with P2 or P3. The APC/CDX2 mouse study showed statistically significant levels of decreased colon polyp numbers in groups treated with P3, as expected, but was not significantly significant for groups treated with P1 and P2. In addition, TRAIL was codon optimized for robust synthesis in Salmonella. The construct will be characterized and evaluated in vitro and in vivo. Hopefully, the therapeutic effect of codon optimized TRAIL will be maximal while almost completely minimizing any unintended side effects.
ContributorsCrawford, Courtney Rose (Co-author) / Crawford, Courtney (Co-author) / Kong, Wei (Thesis director) / Shi, Yixin (Committee member) / Fu, Lingchen (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05