Matching Items (4)
Filtering by

Clear all filters

151402-Thumbnail Image.png
Description
Drosophila melanogaster, as an important model organism, is used to explore the mechanism which governs cell differentiation and embryonic development. Understanding the mechanism will help to reveal the effects of genes on other species or even human beings. Currently, digital camera techniques make high quality Drosophila gene expression imaging possible.

Drosophila melanogaster, as an important model organism, is used to explore the mechanism which governs cell differentiation and embryonic development. Understanding the mechanism will help to reveal the effects of genes on other species or even human beings. Currently, digital camera techniques make high quality Drosophila gene expression imaging possible. On the other hand, due to the advances in biology, gene expression images which can reveal spatiotemporal patterns are generated in a high-throughput pace. Thus, an automated and efficient system that can analyze gene expression will become a necessary tool for investigating the gene functions, interactions and developmental processes. One investigation method is to compare the expression patterns of different developmental stages. Recently, however, the expression patterns are manually annotated with rough stage ranges. The work of annotation requires professional knowledge from experienced biologists. Hence, how to transfer the domain knowledge in biology into an automated system which can automatically annotate the patterns provides a challenging problem for computer scientists. In this thesis, the problem of stage annotation for Drosophila embryo is modeled in the machine learning framework. Three sparse learning algorithms and one ensemble algorithm are used to attack the problem. The sparse algorithms are Lasso, group Lasso and sparse group Lasso. The ensemble algorithm is based on a voting method. Besides that the proposed algorithms can annotate the patterns to stages instead of stage ranges with high accuracy; the decimal stage annotation algorithm presents a novel way to annotate the patterns to decimal stages. In addition, some analysis on the algorithm performance are made and corresponding explanations are given. Finally, with the proposed system, all the lateral view BDGP and FlyFish images are annotated and several interesting applications of decimal stage value are revealed.
ContributorsPan, Cheng (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Farin, Gerald (Committee member) / Arizona State University (Publisher)
Created2012
154269-Thumbnail Image.png
Description
Understanding the complexity of temporal and spatial characteristics of gene expression over brain development is one of the crucial research topics in neuroscience. An accurate description of the locations and expression status of relative genes requires extensive experiment resources. The Allen Developing Mouse Brain Atlas provides a large number of

Understanding the complexity of temporal and spatial characteristics of gene expression over brain development is one of the crucial research topics in neuroscience. An accurate description of the locations and expression status of relative genes requires extensive experiment resources. The Allen Developing Mouse Brain Atlas provides a large number of in situ hybridization (ISH) images of gene expression over seven different mouse brain developmental stages. Studying mouse brain models helps us understand the gene expressions in human brains. This atlas collects about thousands of genes and now they are manually annotated by biologists. Due to the high labor cost of manual annotation, investigating an efficient approach to perform automated gene expression annotation on mouse brain images becomes necessary. In this thesis, a novel efficient approach based on machine learning framework is proposed. Features are extracted from raw brain images, and both binary classification and multi-class classification models are built with some supervised learning methods. To generate features, one of the most adopted methods in current research effort is to apply the bag-of-words (BoW) algorithm. However, both the efficiency and the accuracy of BoW are not outstanding when dealing with large-scale data. Thus, an augmented sparse coding method, which is called Stochastic Coordinate Coding, is adopted to generate high-level features in this thesis. In addition, a new multi-label classification model is proposed in this thesis. Label hierarchy is built based on the given brain ontology structure. Experiments have been conducted on the atlas and the results show that this approach is efficient and classifies the images with a relatively higher accuracy.
ContributorsZhao, Xinlin (Author) / Ye, Jieping (Thesis advisor) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2016
155035-Thumbnail Image.png
Description
A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression

A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression research spanning the mid-twentieth century to the twenty-first century. The critical evaluation of the standard historical narratives of the molecular life sciences clarifies certain philosophical problems with respect to reduction, emergence, and representation, and offers new ways with which to think about the development of scientific research and the nature of scientific change.

The first chapter revisits some of the key experiments that contributed to the development of the repression model of genetic regulation in the lac operon and concludes that the early research on gene expression and genetic regulation depict an iterative and integrative process, which was neither reductionist nor holist. In doing so, it challenges a common application of a conceptual framework in the history of biology and offers an alternative framework. The second chapter argues that the concept of emergence in the history and philosophy of biology is too ambiguous to account for the current research in post-genomic molecular biology and it is often erroneously used to argue against some reductionist theses. The third chapter investigates the use of network representations of gene expression in developmental evolution research and takes up some of the conceptual and methodological problems it has generated. The concluding comments present potential avenues for future research arising from each substantial chapter.

In sum, this dissertation argues that the epistemic practices of gene expression research are an iterative and integrative process, which produces theoretical representations of the complex interactions in gene expression as networks. Moreover, conceptualizing these interactions as networks constrains empirical research strategies by the limited number of ways in which gene expression can be controlled through general rules of network interactions. Making these strategies explicit helps to clarify how they can explain the dynamic and adaptive features of genomes.
ContributorsRacine, Valerie (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred D (Thesis advisor) / Creath, Richard (Committee member) / Newfeld, Stuart (Committee member) / Morange, Michel (Committee member) / Arizona State University (Publisher)
Created2016
154421-Thumbnail Image.png
Description
One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the

One of the fundamental questions in molecular biology is how genes and the control of their expression give rise to so many diverse phenotypes in nature. The mRNA molecule plays a key role in this process as it directs the spatial and temporal expression of genetic information contained in the DNA molecule to precisely instruct biological processes in living organisms. The region located between the STOP codon and the poly(A)-tail of the mature mRNA, known as the 3′Untranslated Region (3′UTR), is a key modulator of these activities. It contains numerous sequence elements that are targeted by trans-acting factors that dose gene expression, including the repressive small non-coding RNAs, called microRNAs.

Recent transcriptome data from yeast, worm, plants, and humans has shown that alternative polyadenylation (APA), a mechanism that enables expression of multiple 3′UTR isoforms for the same gene, is widespread in eukaryotic organisms. It is still poorly understood why metazoans require multiple 3′UTRs for the same gene, but accumulating evidence suggests that APA is largely regulated at a tissue-specific level. APA may direct combinatorial variation between cis-elements and microRNAs, perhaps to regulate gene expression in a tissue-specific manner. Apart from a few single gene anecdotes, this idea has not been systematically explored.

This dissertation research employs a systems biology approach to study the somatic tissue dynamics of APA and its impact on microRNA targeting networks in the small nematode C. elegans. In the first aim, tools were developed and applied to isolate and sequence mRNA from worm intestine and muscle tissues, which revealed pervasive tissue-specific APA correlated with microRNA regulation. The second aim provides genetic evidence that two worm genes use APA to escape repression by microRNAs in the body muscle. Finally, in aim three, mRNA from five additional somatic worm tissues was sequenced and their 3′ends mapped, allowing for an integrative study of APA and microRNA targeting dynamics in worms. Together, this work provides evidence that APA is a pervasive mechanism operating in somatic tissues of C. elegans with the potential to significantly rearrange their microRNA regulatory networks and precisely dose their gene expression.
ContributorsBlazie, Stephen M (Author) / Mangone, Marco (Thesis advisor) / LaBaer, Josh (Committee member) / Lake, Doug (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016