Matching Items (4)
Filtering by

Clear all filters

156746-Thumbnail Image.png
Description
Achieving effective drug concentrations within the central nervous system (CNS) remains one of the greatest challenges for the treatment of brain tumors. The presence of the blood-brain barrier and blood-spinal cord barrier severely restricts the blood-to-CNS entry of nearly all systemically administered therapeutics, often leading to the development of peripheral

Achieving effective drug concentrations within the central nervous system (CNS) remains one of the greatest challenges for the treatment of brain tumors. The presence of the blood-brain barrier and blood-spinal cord barrier severely restricts the blood-to-CNS entry of nearly all systemically administered therapeutics, often leading to the development of peripheral toxicities before a treatment benefit is observed. To circumvent systemic barriers, intrathecal (IT) injection of therapeutics directly into the cerebrospinal fluid (CSF) surrounding the brain and spinal cord has been used as an alternative administration route; however, its widespread translation to the clinic has been hindered by poor drug pharmacokinetics (PK), including rapid clearance, inadequate distribution, as well as toxicity. One strategy to overcome the limitations of free drug PK and improve drug efficacy is to encapsulate drug within nanoparticles (NP), which solubilize hydrophobic molecules for sustained release in physiological environments. In this thesis, we will develop NP delivery strategies for brain tumor therapy in two model systems: glioblastoma (GBM), the most common and deadly malignant primary brain tumor, and medulloblastoma, the most common pediatric brain tumor. In the first research chapter, we developed 120 nm poly(lactic acid-co-glycolic acid) NPs encapsulating the chemotherapy, camptothecin, for intravenous delivery to GBM. NP encapsulation of camptothecin was shown to reduce the drug’s toxicity and enable effective delivery to orthotopic GBM. To build off the success of intravenous NP, the second research chapter explored the utility of 100 nm PEGylated NPs for use with IT administration. Using in vivo imaging and ex vivo tissue slices, we found the NPs were rapidly transported by the convective forces of the CSF along the entire neuraxis and were retained for over 3 weeks. Based on their wide spread delivery and prolonged circulation, we examine the ability of the NPs to localize with tumor lesions in a leptomeningeal metastasis (LM) model of medulloblastoma. NPs administered to LM bearing mice were shown to penetrate into LM mets seeded within the meninges around the brain. These data show the potential to translate our success with intravenous NPs for GBM to improve IT chemotherapy delivery to LM.
ContributorsHouseholder, Kyle Thomas (Author) / Sirianni, Rachael W. (Thesis advisor) / Stabenfeldt, Sarah (Committee member) / Vernon, Brent (Committee member) / Caplan, Michael (Committee member) / Wechsler-Reya, Robert (Committee member) / Arizona State University (Publisher)
Created2018
157613-Thumbnail Image.png
Description
Glioblastoma (GBM) is a highly invasive and deadly late stage tumor that develops from abnormal astrocytes in the brain. With few improvements in treatment over many decades, median patient survival is only 15 months and the 5-year survival rate hovers at 6%. Numerous challenges are encountered in the development of

Glioblastoma (GBM) is a highly invasive and deadly late stage tumor that develops from abnormal astrocytes in the brain. With few improvements in treatment over many decades, median patient survival is only 15 months and the 5-year survival rate hovers at 6%. Numerous challenges are encountered in the development of treatments for GBM. The blood-brain barrier (BBB) serves as a primary obstacle due to its innate ability to prevent unwanted molecules, such as most chemotherapeutics, from entering the brain tissue and reaching malignant cells. The GBM cells themselves serve as a second obstacle, having a high level of genetic and phenotypic heterogeneity. This characteristic improves the probability of a population of cells to have resistance to treatment, which ensures the survival of the tumor. Here, the development and testing of two different modes of therapy for treating GBM is described. These therapeutics were enhanced by pathogenic peptides known to improve entry into brain tissue or to bind GBM cells to overcome the BBB and/or tumor cell heterogeneity. The first therapeutic utilizes a small peptide, RVG-29, derived from the rabies virus glycoprotein to improve brain-specific delivery of nanoparticles encapsulated with a small molecule payload. RVG-29-targeted nanoparticles were observed to reach the brain of healthy mice in higher concentrations 2 hours following intravenous injection compared to control particles. However, targeted camptothecin-loaded nanoparticles were not capable of producing significant treatment benefits compared to non-targeted particles in an orthotopic mouse model of GBM. Peptide degradation following injection was shown to be a likely cause for reduced treatment benefit. The second therapeutic utilizes chlorotoxin, a non-toxic 36-amino acid peptide found in the venom of the deathstalker scorpion, expressed as a fusion to antibody fragments to enhance T cell recognition and killing of GBM. This candidate biologic, known as anti-CD3/chlorotoxin (ACDClx) is expressed as an insoluble protein in Nicotiana benthamiana and Escherichia coli and must be purified in denaturing and reducing conditions prior to being refolded. ACDClx was shown to selectively activate T cells only in the presence of GBM cells, providing evidence that further preclinical development of ACDClx as a GBM immunotherapy is warranted.
ContributorsCook, Rebecca Leanne (Author) / Blattman, Joseph N (Thesis advisor) / Sirianni, Rachael W. (Thesis advisor) / Mor, Tsafrir (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2019
157476-Thumbnail Image.png
Description
Medulloblastoma is the most common malignant pediatric brain cancer and is classified into four different subgroups based on genetic profiling: sonic hedgehog (SHH), WNT, Group 3 and 4. Changes in gene expression often alter the progression and development of cancers. One way to control gene expression is through the acetylation

Medulloblastoma is the most common malignant pediatric brain cancer and is classified into four different subgroups based on genetic profiling: sonic hedgehog (SHH), WNT, Group 3 and 4. Changes in gene expression often alter the progression and development of cancers. One way to control gene expression is through the acetylation and deacetylation of histones. More specifically in medulloblastoma SHH and Group 3, there is an increased deacetylation, and histone deacetylase inhibitors (HDACi) can be used to target this change. Not only can HDACi target increases in deacetylation, they are also known to induce cell cycle arrest and apoptosis. The combination of these factors has made HDACi a promising cancer therapeutic. Panobinostat, a hydrophobic, small molecule HDACi was recently identified as a potent molecule of interest for the treatment of medulloblastoma. Furthermore, panobinostat has already been FDA approved for treatment in multiple myeloma and is being explored in clinical trials against various solid tumors. The laboratory is interested in developing strategies to encapsulate panobinostat within nanoparticles composed of the biodegradable and biocompatible polymer poly(lactic acid)-poly(ethylene glycol) (PLA-PEG). Nanoparticles are formed by single emulsion, a process in which hydrophobic drugs can be trapped within the hydrophobic nanoparticle core. The goal was to determine if the molecular weight of the hydrophobic portion of the polymer, PLA, has an impact on loading of panobinostat in PLA-PEG nanoparticles. Nanoparticles formulated with PLA of varying molecular weight were characterized for loading, size, zeta potential, controlled release, and in vivo tolerability. The results of this work demonstrate that panobinostat loaded nanoparticles are optimally formulated with a 20:5kDa PLA-PEG, enabling loading of ~3.2 % w/w panobinostat within nanoparticles possessing an average diameter of 102 nm and surface charge of -8.04 mV. Panobinostat was released from nanoparticles in a potentially biphasic fashion over 72 hours. Nanoparticles were well tolerated by intrathecal injection, although a cell culture assay suggesting reduced bioactivity of encapsulated drug warrants further study. These experiments demonstrate that the molecular weight of PLA influences loading of panobinostat into PLA-PEG nanoparticles and provide basic characterization of nanoparticle properties to enable future in vivo evaluation.
ContributorsDharmaraj, Shruti (Author) / Sirianni, Rachael W. (Thesis advisor) / Stabenfeldt, Sarah E (Thesis advisor) / Vernon, Brent L (Committee member) / Arizona State University (Publisher)
Created2019
154838-Thumbnail Image.png
Description
Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able

Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able to test many theoretical therapies without having to perform clinical trials and experiments. Mathematical oncology will continue to be an important tool in the future regarding cancer therapies and management.

This dissertation is structured as a growing tumor. Chapters 2 and 3 consider spheroid models. These models are adept at describing 'early-time' tumors, before the tumor needs to co-opt blood vessels to continue sustained growth. I consider two partial differential equation (PDE) models for spheroid growth of glioblastoma. I compare these models to in vitro experimental data for glioblastoma tumor cell lines and other proposed models. Further, I investigate the conditions under which traveling wave solutions exist and confirm numerically.

As a tumor grows, it can no longer be approximated by a spheroid, and it becomes necessary to use in vivo data and more sophisticated modeling to model the growth and diffusion. In Chapter 4, I explore experimental data and computational models for describing growth and diffusion of glioblastoma in murine brains. I discuss not only how the data was obtained, but how the 3D brain geometry is created from Magnetic Resonance (MR) images. A 3D finite-difference code is used to model tumor growth using a basic reaction-diffusion equation. I formulate and test hypotheses as to why there are large differences between the final tumor sizes between the mice.

Once a tumor has reached a detectable size, it is diagnosed, and treatment begins. Chapter 5 considers modeling the treatment of prostate cancer. I consider a joint model with hormonal therapy as well as immunotherapy. I consider a timing study to determine whether changing the vaccine timing has any effect on the outcome of the patient. In addition, I perform basic analysis on the six-dimensional ordinary differential equation (ODE). I also consider the limiting case, and perform a full global analysis.
ContributorsRutter, Erica Marie (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric J (Thesis advisor) / Frakes, David (Committee member) / Gardner, Carl (Committee member) / Jackiewicz, Zdzislaw (Committee member) / Arizona State University (Publisher)
Created2016