Matching Items (26)
Filtering by

Clear all filters

150108-Thumbnail Image.png
Description
In the late 1960s, Granger published a seminal study on causality in time series, using linear interdependencies and information transfer. Recent developments in the field of information theory have introduced new methods to investigate the transfer of information in dynamical systems. Using concepts from Chaos and Markov theory, much of

In the late 1960s, Granger published a seminal study on causality in time series, using linear interdependencies and information transfer. Recent developments in the field of information theory have introduced new methods to investigate the transfer of information in dynamical systems. Using concepts from Chaos and Markov theory, much of these methods have evolved to capture non-linear relations and information flow between coupled dynamical systems with applications to fields like biomedical signal processing. This thesis deals with the application of information theory to non-linear multivariate time series and develops measures of information flow to identify significant drivers and response (driven) components in networks of coupled sub-systems with variable coupling in strength and direction (uni- or bi-directional) for each connection. Transfer Entropy (TE) is used to quantify pairwise directional information. Four TE-based measures of information flow are proposed, namely TE Outflow (TEO), TE Inflow (TEI), TE Net flow (TEN), and Average TE flow (ATE). First, the reliability of the information flow measures on models, with and without noise, is evaluated. The driver and response sub-systems in these models are identified. Second, these measures are applied to electroencephalographic (EEG) data from two patients with focal epilepsy. The analysis showed dominant directions of information flow between brain sites and identified the epileptogenic focus as the system component typically with the highest value for the proposed measures (for example, ATE). Statistical tests between pre-seizure (preictal) and post-seizure (postictal) information flow also showed a breakage of the driving of the brain by the focus after seizure onset. The above findings shed light on the function of the epileptogenic focus and understanding of ictogenesis. It is expected that they will contribute to the diagnosis of epilepsy, for example by accurate identification of the epileptogenic focus from interictal periods, as well as the development of better seizure detection, prediction and control methods, for example by isolating pathologic areas of excessive information flow through electrical stimulation.
ContributorsPrasanna, Shashank (Author) / Jassemidis, Leonidas (Thesis advisor) / Tsakalis, Konstantinos (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2011
150929-Thumbnail Image.png
Description
This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of social, biological, and other non-traditional phenomena has been an important

This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of social, biological, and other non-traditional phenomena has been an important and growing area of signal processing research over the past decade. Here, we explore the application of statistical modeling and signal processing concepts to data obtained from the Global Group Relations Project, specifically to understand and quantify the effects and interactions of social psychological factors related to intergroup conflicts. We use Bayesian networks to specify prospective models of conditional dependence. Bayesian networks are determined between social psychological factors and conflict variables, and modeled by directed acyclic graphs, while the significant interactions are modeled as conditional probabilities. Since the data are sparse and multi-dimensional, we regress Gaussian mixture models (GMMs) against the data to estimate the conditional probabilities of interest. The parameters of GMMs are estimated using the expectation-maximization (EM) algorithm. However, the EM algorithm may suffer from over-fitting problem due to the high dimensionality and limited observations entailed in this data set. Therefore, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are used for GMM order estimation. To assist intuitive understanding of the interactions of social variables and the intergroup conflicts, we introduce a color-based visualization scheme. In this scheme, the intensities of colors are proportional to the conditional probabilities observed.
ContributorsLiu, Hui (Author) / Taylor, Thomas (Thesis advisor) / Cochran, Douglas (Thesis advisor) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2012
150596-Thumbnail Image.png
Description
Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide quick feedbacks and suggestions in case of emergencies, which reduces the cost of healthcare without the expense of hospitalization. This

Advances in miniaturized sensors and wireless technologies have enabled mobile health systems for efficient healthcare. A mobile health system assists the physician to monitor the patient's progress remotely and provide quick feedbacks and suggestions in case of emergencies, which reduces the cost of healthcare without the expense of hospitalization. This work involves development of an innovative mobile health system with adaptive biofeedback mechanism and demonstrates the importance of biofeedback in accurate measurements of physiological parameters to facilitate the diagnosis in mobile health systems. Resting Metabolic Rate (RMR) assessment, a key aspect in the treatment of diet related health problems is considered as a model to demonstrate the importance of adaptive biofeedback in mobile health. A breathing biofeedback mechanism has been implemented with digital signal processing techniques for real-time visual and musical guidance to accurately measure the RMR. The effects of adaptive biofeedback with musical and visual guidance were assessed on 22 healthy subjects (12 men, 10 women). Eight RMR measurements were taken for each subject on different days under same conditions. It was observed the subjects unconsciously followed breathing biofeedback, yielding consistent and accurate measurements for the diagnosis. The coefficient of variation of the measured metabolic parameters decreased significantly (p < 0.05) for 20 subjects out of 22 subjects.
ContributorsKrishnan, Ranganath (Author) / Tao, Nongjian (Thesis advisor) / Forzani, Erica (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2012
151815-Thumbnail Image.png
Description
The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the

The field of education has been immensely benefited by major breakthroughs in technology. The arrival of computers and the internet made student-teacher interaction from different parts of the world viable, increasing the reach of the educator to hitherto remote corners of the world. The arrival of mobile phones in the recent past has the potential to provide the next paradigm shift in the way education is conducted. It combines the universal reach and powerful visualization capabilities of the computer with intimacy and portability. Engineering education is a field which can exploit the benefits of mobile devices to enhance learning and spread essential technical know-how to different parts of the world. In this thesis, I present AJDSP, an Android application evolved from JDSP, providing an intuitive and a easy to use environment for signal processing education. AJDSP is a graphical programming laboratory for digital signal processing developed for the Android platform. It is designed to provide utility; both as a supplement to traditional classroom learning and as a tool for self-learning. The architecture of AJDSP is based on the Model-View-Controller paradigm optimized for the Android platform. The extensive set of function modules cover a wide range of basic signal processing areas such as convolution, fast Fourier transform, z transform and filter design. The simple and intuitive user interface inspired from iJDSP is designed to facilitate ease of navigation and to provide the user with an intimate learning environment. Rich visualizations necessary to understand mathematically intensive signal processing algorithms have been incorporated into the software. Interactive demonstrations boosting student understanding of concepts like convolution and the relation between different signal domains have also been developed. A set of detailed assessments to evaluate the application has been conducted for graduate and senior-level undergraduate students.
ContributorsRanganath, Suhas (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2013
171768-Thumbnail Image.png
Description
Object tracking refers to the problem of estimating a moving object's time-varying parameters that are indirectly observed in measurements at each time step. Increased noise and clutter in the measurements reduce estimation accuracy as they increase the uncertainty of tracking in the field of view. Whereas tracking is performed using

Object tracking refers to the problem of estimating a moving object's time-varying parameters that are indirectly observed in measurements at each time step. Increased noise and clutter in the measurements reduce estimation accuracy as they increase the uncertainty of tracking in the field of view. Whereas tracking is performed using a Bayesian filter, a Bayesian smoother can be utilized to refine parameter state estimations that occurred before the current time. In practice, smoothing can be widely used to improve state estimation or correct data association errors, and it can lead to significantly better estimation performance as it reduces the impact of noise and clutter. In this work, a single object tracking method is proposed based on integrating Kalman filtering and smoothing with thresholding to remove unreliable measurements. As the new method is effective when the noise and clutter in the measurements are high, the main goal is to find these measurements using a moving average filter and a thresholding method to improve estimation. Thus, the proposed method is designed to reduce estimation errors that result from measurements corrupted with high noise and clutter. Simulations are provided to demonstrate the improved performance of the new method when compared to smoothing without thresholding. The root-mean-square error in estimating the object state parameters is shown to be especially reduced under high noise conditions.
ContributorsSeo, Yongho (Author) / Papandreaou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel W (Committee member) / Chakrabarti, Chaitali (Committee member) / Moraffah, Bahman (Committee member) / Arizona State University (Publisher)
Created2022
168844-Thumbnail Image.png
Description
The continuous time-tagging of photon arrival times for high count rate sources isnecessary for applications such as optical communications, quantum key encryption, and astronomical measurements. Detection of Hanbury-Brown and Twiss (HBT) single photon correlations from thermal sources, such as stars, requires a combination of high dynamic range, long integration times, and low systematics

The continuous time-tagging of photon arrival times for high count rate sources isnecessary for applications such as optical communications, quantum key encryption, and astronomical measurements. Detection of Hanbury-Brown and Twiss (HBT) single photon correlations from thermal sources, such as stars, requires a combination of high dynamic range, long integration times, and low systematics in the photon detection and time tagging system. The continuous nature of the measurements and the need for highly accurate timing resolution requires a customized time-to-digital converter (TDC). A custom built, two-channel, field programmable gate array (FPGA)-based TDC capable of continuously time tagging single photons with sub clock cycle timing resolution was characterized. Auto-correlation and cross-correlation measurements were used to constrain spurious systematic effects in the pulse count data as a function of system variables. These variables included, but were not limited to, incident photon count rate, incoming signal attenuation, and measurements of fixed signals. Additionally, a generalized likelihood ratio test using maximum likelihood estimators (MLEs) was derived as a means to detect and estimate correlated photon signal parameters. The derived GLRT was capable of detecting correlated photon signals in a laboratory setting with a high degree of statistical confidence. A proof is presented in which the MLE for the amplitude of the correlated photon signal is shown to be the minimum variance unbiased estimator (MVUE). The fully characterized TDC was used in preliminary measurements of astronomical sources using ground based telescopes. Finally, preliminary theoretical groundwork is established for the deep space optical communications system of the proposed Breakthrough Starshot project, in which low-mass craft will travel to the Alpha Centauri system to collect scientific data from Proxima B. This theoretical groundwork utilizes recent and upcoming space based optical communication systems as starting points for the Starshot communication system.
ContributorsHodges, Todd Michael William (Author) / Mauskopf, Philip (Thesis advisor) / Trichopoulos, George (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Bliss, Daniel (Committee member) / Arizona State University (Publisher)
Created2022
190959-Thumbnail Image.png
Description
The propagation of waves in solids, especially when characterized by dispersion, remains a topic of profound interest in the field of signal processing. Dispersion represents a phenomenon where wave speed becomes a function of frequency and results in multiple oscillatory modes. Such signals find application in structural healthmonitoring for identifying

The propagation of waves in solids, especially when characterized by dispersion, remains a topic of profound interest in the field of signal processing. Dispersion represents a phenomenon where wave speed becomes a function of frequency and results in multiple oscillatory modes. Such signals find application in structural healthmonitoring for identifying potential damage sensitive features in complex materials. Consequently, it becomes important to find matched time-frequency representations for characterizing the properties of the multiple frequency-dependent modes of propagation in dispersive material. Various time-frequency representations have been used for dispersive signal analysis. However, some of them suffered from poor timefrequency localization or were designed to match only specific dispersion modes with known characteristics, or could not reconstruct individual dispersive modes. This thesis proposes a new time-frequency representation, the nonlinear synchrosqueezing transform (NSST) that is designed to offer high localization to signals with nonlinear time-frequency group delay signatures. The NSST follows the technique used by reassignment and synchrosqueezing methods to reassign time-frequency points of the short-time Fourier transform and wavelet transform to specific localized regions in the time-frequency plane. As the NSST is designed to match signals with third order polynomial phase functions in the frequency domain, we derive matched group delay estimators for the time-frequency point reassignment. This leads to a highly localized representation for nonlinear time-frequency characteristics that also allow for the reconstruction of individual dispersive modes from multicomponent signals. For the reconstruction process, we propose a novel unsupervised learning approach that does not require prior information on the variation or number of modes in the signal. We also propose a Bayesian group delay mode merging approach for reconstructing modes that overlap in time and frequency. In addition to using simulated signals, we demonstrate the performance of the new NSST, together with mode extraction, using real experimental data of ultrasonic guided waves propagating through a composite plate.
ContributorsIkram, Javaid (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chattopadhyay, Aditi (Thesis advisor) / Bertoni, Mariana (Committee member) / Sinha, Kanu (Committee member) / Arizona State University (Publisher)
Created2023
189305-Thumbnail Image.png
Description
Quantum computing has the potential to revolutionize the signal-processing field by providing more efficient methods for analyzing signals. This thesis explores the application of quantum computing in signal analysis synthesis for compression applications. More specifically, the study focuses on two key approaches: quantum Fourier transform (QFT) and quantum linear prediction

Quantum computing has the potential to revolutionize the signal-processing field by providing more efficient methods for analyzing signals. This thesis explores the application of quantum computing in signal analysis synthesis for compression applications. More specifically, the study focuses on two key approaches: quantum Fourier transform (QFT) and quantum linear prediction (QLP). The research is motivated by the potential advantages offered by quantum computing in massive signal processing tasks and presents novel quantum circuit designs for QFT, quantum autocorrelation, and QLP, enabling signal analysis synthesis using quantum algorithms. The two approaches are explained as follows. The Quantum Fourier transform (QFT) demonstrates the potential for improved speed in quantum computing compared to classical methods. This thesis focuses on quantum encoding of signals and designing quantum algorithms for signal analysis synthesis, and signal compression using QFTs. Comparative studies are conducted to evaluate quantum computations for Fourier transform applications, considering Signal-to-Noise-Ratio results. The effects of qubit precision and quantum noise are also analyzed. The QFT algorithm is also developed in the J-DSP simulation environment, providing hands-on laboratory experiences for signal-processing students. User-friendly simulation programs on QFT-based signal analysis synthesis using peak picking, and perceptual selection using psychoacoustics in the J-DSP are developed. Further, this research is extended to analyze the autocorrelation of the signal using QFTs and develop a quantum linear prediction (QLP) algorithm for speech processing applications. QFTs and IQFTs are used to compute the quantum autocorrelation of the signal, and the HHL algorithm is modified and used to compute the solutions of the linear equations using quantum computing. The performance of the QLP algorithm is evaluated for system identification, spectral estimation, and speech analysis synthesis, and comparisons are performed for QLP and CLP results. The results demonstrate the following: effective quantum circuits for accurate QFT-based speech analysis synthesis, evaluation of performance with quantum noise, design of accurate quantum autocorrelation, and development of a modified HHL algorithm for efficient QLP. Overall, this thesis contributes to the research on quantum computing for signal processing applications and provides a foundation for further exploration of quantum algorithms for signal analysis synthesis.
ContributorsSharma, Aradhita (Author) / Spanias, Andreas (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2023
193348-Thumbnail Image.png
Description
With the significant advancements of wireless communication systems that aim to meet exponentially increasing data rate demands, two promising concepts have appeared: (i) Cell-free massive MIMO, which entails the joint transmission and processing of the signals allowing the removal of classical cell boundaries, and (ii) integrated sensing and communication (ISAC),

With the significant advancements of wireless communication systems that aim to meet exponentially increasing data rate demands, two promising concepts have appeared: (i) Cell-free massive MIMO, which entails the joint transmission and processing of the signals allowing the removal of classical cell boundaries, and (ii) integrated sensing and communication (ISAC), unifying communication and sensing in a single framework. This dissertation aims to take steps toward overcoming the key challenges in each concept and eventually merge them for efficient future communication and sensing networks.Cell-free massive MIMO is a distributed MIMO concept that eliminates classical cell boundaries and provides a robust performance. A significant challenge in realizing the cell-free massive MIMO in practice is its deployment complexity. In particular, connecting its many distributed access points with the central processing unit through wired fronthaul is an expensive and time-consuming approach. To eliminate this problem and enhance scalability, in this dissertation, a cell-free massive MIMO architecture adopting a wireless fronthaul is proposed, and the optimization of achievable rates for the end-to-end system is carried out. The evaluation has shown the strong potential of employing wireless fronthaul in cell-free massive MIMO systems. ISAC merges radar and communication systems, allowing effective sharing of resources, including bandwidth and hardware. The ISAC framework also enables sensing to aid communications, which shows a significant potential in mobile communication applications. Specifically, radar sensing data can address challenges like beamforming overhead and blockages associated with higher frequency, large antenna arrays, and narrow beams. To that end, this dissertation develops radar-aided beamforming and blockage prediction approaches using low-cost radar devices and evaluates them in real-world systems to verify their potential. At the intersection of these two paradigms, the integration of sensing into cell-free massive MIMO systems emerges as an intriguing prospect for future technologies. This integration, however, presents the challenge of considering both sensing and communication objectives within a distributed system. With the motivation of overcoming this challenge, this dissertation investigates diverse beamforming and power allocation solutions. Comprehensive evaluations have shown that the incorporation of sensing objectives into joint beamforming designs offers substantial capabilities for next-generation wireless communication and sensing systems.
ContributorsDemirhan, Umut (Author) / Alkhateeb, Ahmed (Thesis advisor) / Dasarathy, Gautam (Committee member) / Trichopoulos, Georgios (Committee member) / Michelusi, Nicolò (Committee member) / Arizona State University (Publisher)
Created2024
156805-Thumbnail Image.png
Description
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.
ContributorsDutta, Arindam (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Richmond, Christ (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018